但是, 如果你手上还有的就是这样的朴实无华实验设计下的单细胞转录组,或者你时至今日还想着去单细胞转录组领域分一杯羹,我劝你还是放弃了,还不如选择小众技术做同样的课题(事半功倍),比如2022的文章:《CAMTA1 gene affects the ischemia-reperfusion injury by regulating CCND1》
只需要一个简单的2分组甲基化芯片差异即可:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197080 GSM5908184 genomic DNA from healthy people 1 [ZXJ] GSM5908185 genomic DNA from healthy people 2 [YXG] GSM5908186 genomic DNA from healthy people 3 [ZSS] GSM5908187 genomic DNA from ischemic stroke patients 1 [RWH] GSM5908188 genomic DNA from ischemic stroke patients 2 [HM] GSM5908189 genomic DNA from ischemic stroke patients 3 [ZM]
we used human methylation 850K BeadChip to analyze the differences in gene methylation status in the peripheral blood samples from two groups (3 IS patients vs. 3 healthy controls).
According to their bioinformatics profiling, we found 278 genes with significantly different methylation levels.
Seven genes with the most significant methylation modifications were validated in two expanded groups (100 IS patients vs. 100 healthy controls).
因为是朴实无华的差异分析,所以展现差异分析后的热图即可:
差异分析后的热图 当然了,因为作者定位到了CAMTA1这个基因 ,因为 CAMTA1 gene was the most highly methylated in patients compared to the controls.
所以又顺理成章做了一个转录组测序数据(RNA seq in wild-type and CAMTA1 KO cells),RNA seq in CAMTA1 KO SH-SY5Y以及HEK293T两个细胞系 ,也是很简单的差异分析+富集分析啦。
这个文章的数据有点多,GSE197080, GSE197081, and GSE205687,但是都是很容易理解的。
比如甘肃农业大学的课题组,选取了健康奶牛(C组)和患乳腺炎奶牛的乳腺组织(HM组)然后进行蛋白质组后看差异,在Frontiers in Veterinary Science、Animals、International Journal of Molecular Sciences、Antioxidants、International Journal of Molecular Sciences上连发5篇文章。。。。