铝土矿液对聚合物膨润土GCLs的聚合物洗脱及渗透系数
閾濆湡鐭挎恫瀵硅仛鍚堢墿鑶ㄦ鼎鍦烥CLs鐨勮仛鍚堢墿娲楄劚鍙婃笚閫忕郴鏁
Xing Chen a, Yu Tan b, Tim Copeland c, Jiannan Chen c, Daoping Peng a, Tao Huang a
aSchool of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
bDepartment of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706, USA
cDepartment of Civil, Environmental, and Construction Engineering, University of Central Florida, FL 32816, USA
鎽樿锛氭湰鐮旂┒鑰冨療浜嗚仛鍚堢墿绫诲瀷(楂樺惛姘存ц仛鍚堢墿锛孲AP鍜岃仛闃寸瀛愮氦缁寸礌锛孭AC)锛屽埗澶囨柟娉(骞叉贩鍚堬紝骞叉拻鎴栨箍娣峰悎)锛屽垵濮嬭仛鍚堢墿鍔犺浇(1.0%锛2.5%锛5.0%锛10.0%鍜15.0%)鍜岄摑鍦熺熆娑(鍚堟垚閾濆湡鐭挎恫锛孊LS鍜屽疄闄呴摑鍦熺熆娑诧紝BLA)瀵硅仛鍚堢墿-鑶ㄦ鼎鍦熷湡宸ュ悎鎴愯啫娑﹀湡琛灚(PB GCLs)鐨勮仛鍚堢墿娲楄劚鍜屾笚閫忕郴鏁扮殑褰卞搷銆傜粨鍚堟笚閫忕郴鏁般佹绘湁鏈虹⒊鍒嗘瀽銆佺矘搴︺佹壂鎻忕數闀溿佸倕閲屽彾鍙樻崲绾㈠鍏夎氨鍜寈灏勭嚎琛嶅皠娴嬭瘯锛岀爺绌朵簡PB GCL鑱氬悎鐗╂礂鑴卞拰娓楅忕郴鏁扮殑鎺у埗鏈虹悊銆傜粨鏋滆〃鏄庯紝楂樺垵濮嬭仛鍚堢墿鍔犺浇(10.0%銆15.0%)鎴栭噰鐢ㄥ共鎾掓硶鍒跺鐨凱B GCL鐨勬笚閫忕郴鏁(< 1.0 脳 10-10 m/s)鍜岃仛鍚堢墿娲楄劚鐜(< 10.0 mg/d)杈冧綆銆傜敱浜庣嚎鎬ц仛鍚堢墿(PAC)鐨勫畬鍏ㄦ按婧舵э紝PAC澧炲己GCL鐨勮仛鍚堢墿娲楄劚鐜囬珮浜嶴AP澧炲己GCL銆傚綋BLS娓楅廝B GCLs鏃(绂诲瓙寮哄害楂樹簬BLA)锛岃仛鍚堢墿姘村嚌鑳剁敱浜庤灪鏃嬬姸鎴栨敹缂╂瀯璞¤屽叿鏈夎緝浣庣殑绮樺害锛屼粠鑰屾彁楂樹簡鑱氬悎鐗╂礂鑴遍熺巼(> 50.0 mg/d)鍜屾笚閫忕郴鏁(> 1.0 脳 10-11 m/s)銆
鍏抽敭璇嶏細鑱氬悎鐗╄啫娑﹀湡锛屽湡宸ュ悎鎴愯啫娑﹀湡琛灚锛岃仛鍚堢墿娲楄劚娓楅忕郴鏁帮紝閾濆湡鐭挎恫
1 绠浠
璧ゆ偿鏄哀鍖栭摑绮剧偧杩囩▼涓殑閾濆湡鐭挎福锛岄氬父鍫嗘斁鍌ㄥ瓨銆傝丹娉ュ彲鐢熸垚瓒呯⒈鎬ф笚婊ゆ恫(閾濆湡鐭挎恫)锛岀瀛愬己搴﹂珮锛屽惈鏈夊绉嶉噸閲戝睘(濡侫s銆丳b銆乑n) (Sun et al., 2019)銆傚洜姝わ紝閾濆湡鐭挎恫鍙兘浼氬鍔犲湴涓嬫按鍜屽湡澹ゆ薄鏌撶殑椋庨櫓銆備腑鍥界幇琛屾硶瑙(GB 50986-2014鍜孏B18599-2020)瑕佹眰鍘嬪疄绮樺湡琛灚(CCL)涓婅鍦熷伐鑶滀綔涓洪槻娓楁潗鏂欍傛澶栵紝涔熷厑璁镐娇鐢ㄦ浛浠f潗鏂(渚嬪锛屽湡宸ュ悎鎴愯啫娑﹀湡琛灚锛孏CL)锛屽彧瑕佸叾娓楅忕郴鏁扮瓑浜庢垨浣庝簬CCL銆侴CL鍥犲叾瀵规按鐨勬笚閫忕郴鏁颁綆(< 1.0 脳 10-10m /s)銆佸畨瑁呮柟渚裤佷綋绉皬銆佽妭鐪佺┖闂寸瓑浼樼偣锛岃骞挎硾搴旂敤浜庡簾寮冪墿闃叉笚璁炬柦涓 (Shackelford et al., 2000; Kolstad et al., 2004b; Bradshaw et al., 2013; Scalia et al., 2014; Tian et al., 2016; Tian and Benson, 2019; Setz et al., 2017; McWatters et al., 2019)銆
GCLs鏄敱涓灞傝杽钖勭殑鑶ㄦ鼎鍦熷す鍦ㄤ袱灞傚湡宸ュ竷涔嬮棿缁勬垚鐨 (Jo et al., 2001, 2005; Rowe, 2020)銆傝挋鑴辩煶鏄啫娑﹀湡鐨勪富瑕佺熆鐗╂垚鍒 (Shackelford et al., 2000)銆 褰撹挋鑴辩煶鍦ㄦ按涓按鍖栨椂锛屾墍浜х敓鐨勬笚閫忚啫鑳浼氬噺灏忓瓟闅欏昂瀵革紝瀵艰嚧GCL鐨勬祦閫氳矾寰勬洿灏忋佹洿鏇叉姌锛屾笚閫忕郴鏁版洿浣(Jo et al., 2001; Kolstad et al., 2004b; Scalia et al., 2014; Setz et al., 2017)銆傜劧鑰岋紝鍏锋湁楂樼瀛愬己搴﹀拰澶氫环闃崇瀛愪紭鍔跨殑渚佃殌鎬ф笚婊ゆ恫鍙互鎶戝埗娓楅忚啫鑳锛屼粠鑰屽鑷存洿楂樼殑娓楅忕郴鏁 (Shackelford et al., 2000; Jo et al., 2001; Kolstad et al., 2004b; Katsumi et al., 2007; Bradshaw and Benson, 2014; Bradshaw et al., 2015; Tian et al., 2016; Chen et al., 2018)銆傛澶栵紝閾濆湡鐭挎恫绛塸H鏋佸(< 3.0鎴> 12.0)鐨勬蹈鍑烘恫浼氭憾瑙h挋鑴辩煶锛岀敓鎴愪笉鑶ㄨ儉鐨勬鐢熺熆鐗╋紝浣垮叾鑶ㄨ儉鎬ц兘鍑忓急锛屼竴鑸細鎻愰珮GCLs鐨勬笚閫忕郴鏁(Benson et al., 2008, 2010; Bouazza and Gates, 2014)銆
鍥犳锛屼娇鐢ㄨ仛鍚堢墿澧炲己浜嗕紶缁熺殑GCL锛屼互鎻愰珮瀵硅厫铓鎬ф笚婊ゆ恫鐨勫寲瀛︾浉瀹规(Katsumi et al., 2008; Tian and Benson, 2018; Yu et al., 2019; Tian et al., 2019; Chen et al., 2019; Li et al., 2021; Chai and Prongmanee, 2020; Wireko and Abichou, 2021; Zainab et al., 2021; Norris et al., 2022a; Wireko et al., 2022; Wang et al., 2022)銆傝仛鍚堢墿-鑶ㄦ鼎鍦烥CL (PB GCL)锛屽HYPER绮樺湡銆佸瘑闆嗛姘村寲GCL鍜岃啫娑﹀湡鑱氬悎鐗╁鍚圙CL (BPC gcl)瀵硅厫铓鎬ф笚婊ゆ恫鐨勬笚閫忕郴鏁拌緝浣 (Kolstad et al., 2004a; Di Emidio et al., 2015; Scalia et al., 2014)銆備互寰鐨勭爺绌跺彂鐜帮紝褰撴笚閫忛摑鍦熺熆娑层佺剼鐑ч鐏版笚婊ゆ恫鍜岀叅鐕冪儳浜х墿娓楁护娑叉椂锛岄珮鑱氬悎鐗╁姞杞(> 5.0%)鐨凚PC GCL鐨勬笚閫忕郴鏁(~ 10-12 m/s)鏄庢樉浣庝簬甯歌GCL(~ 10-7 m/s) (Chen et al., 2019; Li et al., 2021; Zainab et al., 2021; Wireko et al., 2022)銆傛澶栵紝PB GCLs鐨勪綆娓楅忕郴鏁版槸鐢变簬涓夌淮鑱氬悎鐗╂按鍑濊兌缁撴瀯鍫靛浜嗘祦閬(鍏锋湁娴佸姩娑茬浉鐨勭矑闂村瓟闅欑┖闂) (Tian et al., 2019; Chen et al., 2019; Li et al., 2021; Wireko et al., 2022)銆
鐢变簬娓楁护娑茬牬鍧忎簡鑱氬悎鐗╂按鍑濊兌锛屽洜姝ゆ笚閫忚繃绋嬩腑鐨勮仛鍚堢墿娲楄劚鏄奖鍝峆B GCL娓楅忕郴鏁扮殑涓涓噸瑕佸洜绱(Scalia and Benson, 2016; Wireko and Abichou, 2021; Wang et al., 2022; Wireko et al., 2022)銆傝仛鍚堢墿娲楄劚鍙互鎵撳紑鏈鍒濊鑱氬悎鐗╂按鍑濊兌鍫靛鐨勫瓟闅欙紝骞舵彁渚涢澶栫殑娴佸姩璺緞锛屾彁楂楶B GCL鐨勬笚閫忕郴鏁(Tian et al., 2019; Chen et al., 2019; Zainab et al., 2021)銆傚垎鏋愪簡鑱氬悎鐗╁姞鑽锋畫鐣欍佽仛鍚堢墿娲楄劚娑茬疮绉川閲忓拰鑱氬悎鐗╂礂鑴辨恫鐧惧垎姣旓紝鎺㈣浜嗚仛鍚堢墿娲楄劚娑插娓楅忕郴鏁扮殑褰卞搷銆侰hen绛変汉(2019)鎶ュ憡绉帮紝鑱氬悎鐗╁姞杞芥畫浣(浠h〃BPC GCL涓繚鐣欑殑鑱氬悎鐗╂按鍑濊兌)鏄鐓ょ噧鐑т骇鐗╂笚婊ゆ恫娓楅忕郴鏁颁綆鐨勫師鍥犮傜劧鑰岋紝Wireko鍜孉bichou(2021)鎶ラ亾锛屽嵆浣垮湪鐩稿悓鐨勬畫浣欒仛鍚堢墿鍔犺嵎涓嬶紝鐩稿悓鐨凱B GCL鍏锋湁涓嶅悓鐨勬笚閫忕郴鏁般俉ireko绛変汉(2022)涔熻瀵熷埌锛孭B GCL鐨勬笚閫忕郴鏁颁笌GCL涓繚鐣欑殑鑱氬悎鐗╃殑璐ㄩ噺(鎴栫櫨鍒嗘瘮)鏃犲叧銆傞壌浜庝笂杩板弬鏁颁笌娓楅忔椂闂村瘑鍒囩浉鍏筹紝搴旈噸鐐瑰叧娉ㄨ仛鍚堢墿鐨勬礂鑴遍熺巼 (Wireko et al., 2022; Wang et al., 2022)銆
Tian鍜孊enson(2019)浠ュ強Li绛変汉(2021)璇勪及浜咮PC GCL瀵归摑鍦熺熆娑茬殑娓楅忕郴鏁般傜劧鑰岋紝鍦ㄨ繖浜涚爺绌朵腑浣跨敤鐨凚PC GCL鏄晢涓氫骇鍝侊紝鍒堕犲晢娌℃湁鎻愪緵鑱氬悎鐗╃被鍨嬬殑璇︾粏淇℃伅銆傚洜姝わ紝鏈爺绌堕夋嫨涓ょ鑱氬悎鐗(绾挎ц仛鍚堢墿鍜屼氦鑱旇仛鍚堢墿)浣滀负鏀规у墏锛岄氳繃涓嶅悓鐨勬柟娉曞埗澶嘝B GCL銆備负浜嗘洿濂藉湴浜嗚В褰卞搷PB GCL娓楅忕郴鏁扮殑鍥犵礌锛屽皢鑱氬悎鐗╃殑鍒濆鍔犺浇鑼冨洿(1.0% ~ 15.0%)杩涜浜嗘墿灞曘傝仛鍚堢墿娲楄劚鏄帶鍒禤B GCL娓楅忕郴鏁扮殑閲嶈鍥犵礌锛孴ian 鍜 Benson(2019)鍜孡i et al.(2021)鍧囨湭瀵规杩涜璁ㄨ銆傚洜姝わ紝鏈爺绌堕噸鐐圭爺绌朵簡閾濆湡鐭挎恫娓楅廝B - GCL鑱氬悎鐗╂礂鑴辩殑褰卞搷鍥犵礌鍙婃帶鍒惰仛鍚堢墿娲楄劚鐨勬満鐞嗐
鏈爺绌剁殑鐩殑鏄皟鏌ラ摑鍦熺熆娑层佽仛鍚堢墿绫诲瀷銆佸垵濮嬭仛鍚堢墿鍔犺浇鍜屽埗澶囨柟娉曞PB GCL鐨勬笚閫忕郴鏁板拰鑱氬悎鐗╂礂鑴辩殑褰卞搷銆傛湰鐮旂┒閲囩敤婀挎贩鍚堟硶銆佸共娣峰悎娉曞拰骞叉磼娉曞垎鍒敤楂樺惛姘存ц仛鍚堢墿(SAP锛屼氦鑱旇仛鍚堢墿)鎴栬仛闃寸瀛愮氦缁寸礌(PAC锛岀嚎鐘惰仛鍚堢墿)鍒跺PB GCL銆傚垵濮嬭仛鍚堢墿鍔犺浇鍒嗗埆涓1.0%銆2.5%銆5.0%銆10.0%鍜15.0%銆備互閾濆湡鐭挎恫(BLS鍜孊LA)涓烘笚閫忔恫锛岃繘琛屼簡娓楅忕郴鏁版祴璇曞拰鎬绘湁鏈虹⒊(TOC)鍒嗘瀽銆傛澶栵紝缁撳悎绮樺害銆佹壂鎻忕數闀(SEM)銆佸倕閲屽彾鍙樻崲绾㈠鍏夎氨(FTIR)鍜寈灏勭嚎琛嶅皠(XRD)娴嬭瘯瀵筆B GCL鍜岃仛鍚堢墿鐨勫井瑙傜粨鏋勮繘琛屼簡鍒嗘瀽锛屾彮绀轰簡鑱氬悎鐗╂礂鑴卞拰娓楅忕郴鏁扮殑鎺у埗鏈虹悊銆
2 鏉愭枡鍜屾柟娉
2.1 鏉愭枡
鏈爺绌朵娇鐢ㄤ粠鍟嗕笟GCL (GA, 4500 g/m2)涓彁鍙栫殑浜哄伐閽犲寲鑶ㄦ鼎鍦熷悎鎴怭B GCLs銆傝啫娑﹀湡鐨勯槼绂诲瓙浜ゆ崲瀹归噺涓51 cmol+/kg锛岀粨鍚堢殑闃崇瀛愮敱45%鐨勯挔(Na+)銆44%鐨勯挋(Ca2+)銆7%鐨勯晛(Mg2+)鍜3%鐨勯捑(K+)缁勬垚(ASTM, 2010)銆傝啫娑﹀湡鐨勭熆鐗╃粍鎴愪负:钂欒劚鐭70%銆佺煶鑻10%銆佹柟瑙g煶12%銆佹枩闀跨煶4%銆侀捑闀跨煶3%銆佹哺鐭1%銆傛湁鍏虫祴瀹氭柟娉曠殑璇︾粏淇℃伅瑙佽ˉ鍏呮潗鏂(鍙湪绾胯幏鍙) (Moore and Reynolds, 1989; Scalia et al., 2014; Mazaheri et al., 2008)銆
閫夋嫨楂樺惛姘存ц仛鍚堢墿(SAP)鍜岃仛闃寸瀛愮氦缁寸礌(PAC)浣滀负鏀规у墏銆係AP鐨勪富瑕佹垚鍒嗘槸浜よ仈鑱氫笝鐑吀閽犮備娇鐢⊿AP鐨凣CL寰楀埌浜嗗寮猴紝鍏锋湁鏇村ソ鐨勬按鍔涙ц兘(Scalia and Benson, 2016; Salemi et al., 2018; Wireko et al., 2022)銆侾AC鏄竴绉嶆按婧舵х嚎鐘惰仛鍚堢墿锛屽凡琚敤浜庢敼鍠凣CL涓庤厫铓鎬ф笚婊ゆ恫鐨勫寲瀛︾浉瀹规(Landis et al., 2012; Du et al., 2021; Shi et al., 2022)銆傛澶栵紝瀹冧滑鍦ㄩ摑鍦熺熆娑蹭腑鐨勫簲鐢ㄧ爺绌惰緝灏戙傝仛鍚堢墿鐨勮缁嗕俊鎭拰鎶鏈鏍艰琛ュ厖鏉愭枡鍜岃〃S1銆
2.2 閾濈熆鍦熸恫
鏈爺绌堕噰鐢ㄤ簡涓ょ閾濆湡鐭挎恫:(1)鍚堟垚閾濆湡鐭挎恫(BLS)鏄熀浜庡浗鍐呮哀鍖栭摑鍘傜殑淇℃伅锛屼唬琛ㄤ簡瀹為檯閾濆湡鐭挎恫鐨勫吀鍨嬪拰杈冨樊鐨勬薄鏌撶壒寰(Sun et al., 2019; Li et al., 2021); (2)浠庢煇璧ゆ偿鍫嗗満(涓浗锛岄噸搴)钃勬按鎺掓按绠′腑鏀堕泦瀹為檯閾濆湡鐭挎恫(BLA)銆傜敱琛1鍙煡锛屼袱绉嶉摑鍦熺熆娑插潎涓鸿秴纰辨(pH > 12.0)锛岃孊LS鐨勭瀛愬己搴﹁繙楂樹簬BLA (622.5 mM > 156.9mM)銆傞摑鍦熺熆娑茬殑鍒跺鏂规硶瑙佽ˉ鍏呰祫鏂欍
琛1 閾濆湡鐭挎恫鐨勬讳綋鍖栧鍙傛暟鍙婁富瑕佸厓绱犲拰闃寸瀛愭祿搴
2.3 鑱氬悎鐗╄啫娑﹀湡GCLs鍚堟垚
PB GCL鐨勫埗澶囧伐鑹哄鍥維1鎵绀猴紝鍖呮嫭婀挎贩鍚堟硶(WM)銆佸共娣峰悎娉(DM)鍜屽共娲掓硶(DS)(Kolstad et al., 2004a; Razakamanantsoa et al., 2012; Scalia, 2012; Di Emidio et al., 2015; Scalia and Benson, 2016; Du et al., 2021; Norris et al., 2022a; Shi et al., 2022)銆傝繖浜涙柟娉曠殑璇︾粏杩囩▼鍦ㄨˉ鍏呮潗鏂欎腑鎻愪緵銆傛敼鎬у墏鍖呮嫭浜よ仈SAP (S)鍜岀嚎鎬AC (P)銆傛牴鎹甈B GCL鏍峰搧涓啫娑﹀湡鐨勮川閲忥紝鍒濆鑱氬悎鐗╁姞杞借缃负1.0%銆2.5%銆5.0%銆10.0%鍜15.0%锛屼唬琛ㄦ湭澧炲己鐨勮啫娑﹀湡涓坊鍔犺仛鍚堢墿鐨勮川閲忕櫨鍒嗘瘮銆傚埗澶囦簡20绉峆B GCL骞跺鍏惰繘琛屼簡鐮旂┒銆備緥濡傦紝SWM5瑙勫畾鍦ㄥ垵濮嬭仛鍚堢墿鍔犺浇涓5.0%鐨勬儏鍐典笅锛屼娇鐢ㄦ箍娣峰悎鏂规硶閫氳繃SAP澧炲己PB GCL銆
2.4 寰昂搴﹀垎鏋
鍦ㄨ繘琛屾按鍔涙ц兘璇曢獙鍓嶏紝缁撳悎FTIR銆乆RD鍜孲EM瀵筆B - GCL璇曟牱杩涜寰灏哄害鍒嗘瀽(绮樺湡-鑱氬悎鐗╃浉浜掍綔鐢)銆傞噰鐢↘Br棰楃矑鎶鏈(1:20)锛屽湪2 cm-1鍒嗚鲸鐜囷紝瀹ゆ俯鐨勪紶杈撴ā寮忎笅锛屽湪Thermo Fisher Niolet iN10(鍏夎氨鑼冨洿:400-4000 cm-1)涓婅繘琛屼簡FTIR娴嬭瘯銆侹Br鍦200鈩冧笅骞茬嚗24 h锛岀敤鐞冪(鏈哄拰鑶ㄦ鼎鍦熺矇鍧囪川澶勭悊銆傚湪杩涜XRD娴嬭瘯鍓嶏紝灏嗙儤骞插悗鐨勮啫娑﹀湡鐢ㄧ帥鐟欑爺閽靛湪26鈩冦58%鐨勭浉瀵规箍搴︿笅鐮旂(锛岀洿鑷冲潎璐ㄨ啫娑﹀湡绮夌矑搴︿负45 渭m銆俋RD娴嬭瘯閲囩敤Rigaku SmartLab SE琛嶅皠浠(Cu-K伪杈愬皠锛屛 = 0.1541 nm, D/teX-Ultra妫娴嬪櫒)銆傛祴閲忚寖鍥翠负5 ~ 70鈼2胃锛屾壂鎻忛熺巼涓5鈼(2胃) min-1銆 鍦ㄨ繘琛屾壂鎻忕數闀(SEM)娴嬭瘯涔嬪墠锛屽皢鏍峰搧鍦20 kPa鐨勭湡绌烘潯浠朵笅鐢ㄦ恫姘(-196鈼)鍐峰喕骞茬嚗(vacuum Freeze dry, LGJ-10, Beijing, China)锛屼互淇濇寔鏍峰搧鍦ㄦ按鍖栫姸鎬佷笅鐨勫師濮嬪井瑙傜粨鏋(Tian et al., 2016; Tian et al., 2019; Li et al., 2021)銆 鐒跺悗锛岀敤鎵嬫湳鍒鍒囧壊鍐诲共鏍囨湰锛屽苟閫氳繃婧呭皠闀閲(Denton Vacuum Desk II, Moorestown, NJ, USA)浠ヨ繘琛屾壂鎻忕數闀滐紙SEM锛夋祴璇曘傚埄鐢╖EISS Sigma 300 (3 kev鐢靛瓙鏉燂紝浼犵粺浜屾鐢靛瓙妫娴嬪櫒)鍜岃兘閲忚壊鏁灏勭嚎鑳借氨浠(EDS锛屽瀷鍙2227a - asp - sn, Thermo Scientific NORAN, Waltham, Massachusetts)杩涜SEM娴嬭瘯锛屽垎鏋怭B GCLs鐨勫舰鎬佸拰鑱氬悎鐗╁垎甯冦
姝ゅ锛岃繕鑾峰緱浜嗘笚閫忕郴鏁版祴璇曞悗鐨凱B GCLs鍒囧壊琛ㄩ潰鐨凷EM鍥惧儚锛屼互瑙傚療閾濆湡鐭挎恫娓楅忓悗PB GCLs鐨勫井瑙傜粨鏋勩傝繕瀵硅仛鍚堢墿杩涜浜哠EM娴嬭瘯锛屼互璇勪及閾濆湡鐭挎恫瀵规瀯璞$殑褰卞搷銆傚皢0.05 g鑱氬悎鐗╁湪10ml閾濆湡鐭挎恫涓按鍖24h鍒跺鑱氬悎鐗╂爣鏈
2.5 姘村姏鎬ц兘娴嬭瘯
浠LS鍜孊LA涓烘祴璇曟恫锛屽GA鍜孭B鍨婫CL杩涜浜嗘按鍔涙ц兘璇曢獙(鑶ㄨ儉鎸囨暟璇曢獙鍜屾笚閫忕郴鏁拌瘯楠)銆傛澶栵紝浣跨敤鍘荤瀛愭按杩涜瀵圭収璇曢獙銆傝啫鑳鎸囨暟璇曢獙鍙傜収ASTM D5890 (ASTM, 2011)銆
閲囩敤鏌旀у娓楅忎华瀵瑰寮鸿啫娑﹀湡棰楃矑(90%閫氳繃缇庡浗4鍙风瓫锛4.75 mm)杩涜浜嗘笚閫忕郴鏁版祴璇曘傛牴鎹甋calia绛変汉(2014)鐨勮娉曪紝鍏稿瀷鐨勫晢鐢℅CL鐨勫伐绋嬬粨鏋勬槸浣跨敤澧炲己鑶ㄦ鼎鍦熼噸鐜扮殑銆傚湪娓楅忎华涓紝鍧囧寑鐨勫寮鸿啫娑﹀湡灞(4500 g/m2锛岀洿寰100 mm)澶瑰湪缂栫粐(110 g/m2)鍜岄潪缁囬(220 g/m2)鍦熷伐甯冧箣闂 (Li et al., 2021; Norris et al., 2022a)銆傛笚閫忕郴鏁版祴璇曢伒寰狝STM D6766 (ASTM, 2012)鍜孉STM D5084 (ASTM, 2016)涓檷姘村ご-鎭掑畾灏炬按鏂规硶銆
鐒跺悗锛屼娇鐢⊿himadzu TOC- LCPH鍒嗘瀽浠(Shimadzu, Kyoto, Japan)鎸夌収ASTM D4839 (ASTM, 2017)杩涜TOC鍒嗘瀽銆傛牴鎹嚭姘碩OC鏁版嵁璁$畻鑱氬悎鐗╂礂鑴遍熺巼(Rpe锛 %/d)锛岄噺鍖栨笚閫忚繃绋嬩腑鑱氬悎鐗╃殑娲楄劚(Wang et al., 2022):
鍏朵腑TOC1鍜孴OC2鍒嗗埆涓哄嚭姘村拰閾濆湡鐭挎恫涓殑TOC娴撳害(mg/L);V涓烘祦鍑虹墿鐨勪綋绉(L);C涓鸿仛鍚堢墿閲嶅鍗曞厓涓⒊鍏冪礌鐨勮川閲忓垎鏁(%);T涓烘笚閫忔椂闂(d);m涓篜B GCL璐ㄩ噺(mg);B涓哄垵濮嬭仛鍚堢墿杞借嵎(%)銆傝仛鍚堢墿娲楄劚閫熺巼(%/d) 脳 mb =鑱氬悎鐗╂礂鑴遍熺巼(mg/d)銆傛按鍔涙ц兘璇曢獙鐨勬洿澶氱粏鑺傚湪琛ュ厖鏉愭枡涓璁恒
2.6 榛忓害娴嬭瘯
绾挎ц仛鍚堢墿鏄按婧舵х殑锛岀敱浜庝翰姘存у姛鑳藉洟鐨勫瓨鍦紝鍙互褰㈡垚绮樻ц仛鍚堢墿姘村嚌鑳 (Kadajji and Betageri, 2011; Rivas et al., 2018)銆傜劧鑰岋紝浜よ仈鑱氬悎鐗╀竴鑸笉鑳戒綔涓虹嚎鎬ц仛鍚堢墿婧朵簬姘达紝浣嗕篃鍙互閫氳繃鍚告按褰㈡垚绮樻ц仛鍚堢墿姘村嚌鑳躲傛澶栵紝鑱氬悎鐗╃殑绮樺害鍙互閫氳繃鎺у埗鑱氬悎鐗╃殑杩佺Щ鐜囨潵褰卞搷娓楅忚繃绋嬩腑鑱氬悎鐗╃殑娲楄劚(Schweins and Huber, 2001; Schweins et al., 2006; Wireko and Abichou, 2021)銆
闅忓悗锛屽鑱氬悎鐗╁寮鸿啫娑﹀湡涓庨摑鍦熺熆娑叉贩鍚堝埗澶囩殑娴嗘枡杩涜绮樺害娴嬭瘯锛屾帰璁ㄩ摑鍦熺熆娑插娴嗘枡绮樺害鐨勫奖鍝嶃傝仛鍚堢墿澧炲己鑶ㄦ鼎鍦熸祮鏂欑殑绮樺害鐢盉rookfield鏁板瓧绮樺害璁(DV2T, AMETEK Brookfield, Middleborough, Massachusetts)娴嬪畾銆傜矘搴︽祴璇曠殑璇︾粏淇℃伅鍦ㄨˉ鍏呮潗鏂欎腑鎻愪緵銆
3 缁撴灉鍜岃璁
3.1 鑱氬悎鐗╁寮哄悗GCL鐨勫井灏哄害鍒嗘瀽
XRD娴嬭瘯缁撴灉(鍥1a)琛ㄦ槑锛孭B GCLs 钂欒劚鐭(d001)鐨勭涓娆$壒寰佸弽灏(PWM10: 1468;SWM10: 1611)灏忎簬GA(2076)銆傛箍娉曟贩鍚堣繃绋嬩腑鏈烘鎼呮媽瀵艰嚧钂欒劚鍦熷墺绂伙紝寮哄害闄嶄綆 (Morgan and Gilman, 2003; Yu et al., 2019; Shi et al., 2022)銆 d001鐨勯檷浣庤〃鏄庤繖浜涢槾绂诲瓙鑱氬悎鐗╁緢闅惧祵鍏ヨ挋鑴卞湡澶瑰眰涓 (Shi et al., 2022; Theng, 1982; Di Emidio et al., 2015; Kolstad et al., 2004a)銆
GCL鏍峰搧鐨凢TIR鍏夎氨濡傚浘1b鎵绀恒侾B GCL鐨勬尟鍔ㄦā寮忎笌GA鐩镐技锛屽寘鎷細鑷敱姘寸殑OH浼哥缉鎸姩甯(3448 ~ 3454 cm-1)銆佽嚜鐢辨按鐨凮H寮洸鎸姩甯(1640 cm-1)鍜孲i-O-Si鍙嶅绉颁几缂╂尟鍔ㄥ甫(1040 ~ 1042 cm-1)銆備絾鍦ㄥ嚑绉嶆尟鍨嬬殑棰戝甫鍐呬粛瀛樺湪鍋忓樊銆傚鍥1b鍜岃〃S2鎵绀猴紝PWM10鍏锋湁PAC (-CH2鍙嶅绉颁几缂╂尟鍔ㄥ甫2923 cm-1鍜孋-O-H寮洸鎸姩甯1333 cm-1)涓ょ鏂扮殑鎸姩妯″紡銆傚浜嶴WM10鏍峰搧锛屽湪鍥1b鍜岃〃S2涓繕瑙傚療鍒癝AP鐨勪袱涓柊鐨勫惛鏀跺甫(C - C閿:1642 cm-1鍜孋 - O瀵圭О浼哥缉鎸姩甯:1401 cm-1)銆侳TIR鍏夎氨琛ㄦ槑锛孲AP鍜孭AC鍒嗗瓙涓庤啫娑﹀湡鎴愬姛鐩镐簰浣滅敤銆傛澶栵紝闃寸瀛愯仛鍚堢墿涓庤啫娑﹀湡琛ㄩ潰涔嬮棿鐨勭數鑽锋帓鏂ヤ綔鐢ㄥ鑷撮槼绂诲瓙妗ユ帴鏄叧閿殑鐩镐簰浣滅敤(Theng, 1982; Shi et al., 2022; Yu et al., 2019; Norris et al., 2022a; Wang et al., 2022)銆
鍥1 (a)闅忔満鍙栧悜绮夋湯(GA銆丳WM10銆丼WM10)鐨刋RD璋; (b) GA銆丼AP銆丼WM10銆丳AC鍜孭WM10鐨凢TIR琛ㄥ緛銆侴A:甯歌GCL;PAC锛岃仛闃寸瀛愮氦缁寸礌;SAP锛岄珮鍚告按鎬ц仛鍚堢墿;PWM10: PAC澧炲己PB GCL锛屽垵濮嬭仛鍚堢墿璐熻浇10%锛屾箍娣峰悎;SWM10: SAP澧炲己GCL锛屽垵濮嬭仛鍚堢墿璐熻浇涓10锛屾箍娣峰悎銆
GA鍜孭B GCL鍦ㄦ笚閫忕郴鏁拌瘯楠屽墠鐨凷EM鍥惧儚濡傚浘S3a鎵绀恒侴A棰楃矑琛ㄧ幇鍑轰笉鍧囧寑鐨勮仛闆嗙粨鏋勩傛箍娣峰悎娉曞埗澶囩殑PWM10璇曟牱褰㈡垚浜嗗叿鏈夌墖灞傜粨鏋勭殑姘村嚌鑳剁綉缁滐紝鍦ㄦ箍娣峰悎娉曞埗澶囪繃绋嬩腑锛岀敱浜庢満姊版悈鎷屼綔鐢紝鍦ㄧ綉缁滅粨鏋勪笂绮樼粨浜嗗井灏忛绮(Shi et al., 2022)銆係WM10鐨凷EM鍥惧儚琛ㄦ槑锛孲AP姘村嚌鑳跺寘瑁逛簡鑱氬悎鐗╄啫娑﹀湡棰楃矑鐨勫眰鐘剁粨鏋勩傛澶栵紝EDS缁撴灉琛ㄦ槑锛岃仛鍚堢墿鐨勪富瑕佺粍鎴愬厓绱燙鍏冪礌鍦≒B GCL涓殑鍘熷瓙鐧惧垎鐜囬珮杈8.54%(鍥維3b)銆係EM鍥(鍥維3c)涔熸樉绀轰簡C鍏冪礌鐨勫垎甯冿紝琛ㄦ槑鑶ㄦ鼎鍦熷凡缁忚鑱氬悎鐗╁寮 (Wang et al., 2022)銆
3.2 PB GCL瀵归摑鍦熺熆娑茬殑娓楅忕郴鏁
GCL瀵归摑鍦熺熆娑插拰DI姘寸殑娓楅忕郴鏁板拰鑶ㄨ儉鎸囨暟鎬荤粨瑙佽〃2銆傛笚閫忕郴鏁拌瘯楠屾寔缁椂闂撮暱杈180澶╋紝鎵鏈塆CL鐨勬笚閫忕郴鏁颁繚鎸佺ǔ瀹氥傜粨鏋滆〃鏄庯紝鐢变簬閾濆湡鐭挎恫鎶戝埗鑶ㄦ鼎鍦熺殑娓楅忚啫鑳锛孏A-BLS (GA娓楅廈LS)鍜孏A- BLA鐨勬笚閫忕郴鏁(> 1.0 脳 10-8 m/s)鏄庢樉楂樹簬GA- DI (2.7 脳 10-11 m/s)銆傜劧鑰岋紝澶у鏁癙B GCL瀵归摑鍦熺熆娑茬殑娓楅忕郴鏁颁綆浜嶨A (< 1.0 脳 10-10 m/s)锛岃〃鏄庤仛鍚堢墿澧炲己鎴愬姛鍦版敼鍠勪簡GA瀵归摑鍦熺熆娑茬殑鍖栧鐩稿鎬с
琛2 GCL鐨勬笚閫忕郴鏁板拰鑶ㄨ儉鎸囨暟缁艰堪(GA:甯歌GCL S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮); GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞%鍒伴摑鍦熺熆娑(BLA:瀹為檯閾濆湡鐭挎恫;BLS:鍚堟垚閾濆湡鐭挎恫)鍜孌I鍘荤瀛愭按銆
娉: PVF =棰勬祦閲;N/A =涓嶉傜敤;-=鏈祴閲忋
a 娓楅忔祴璇曚粛鍦ㄨ繘琛屼腑锛屼互鏀堕泦鏇村鐨勫嚭姘磋繘琛屽寲瀛﹀钩琛¤瘎浼帮紝骞剁‘瀹氶暱鏈熸按鍔涙ц兘銆
b 杩欎簺鍙傛暟鐨勮绠楀叕寮忓彲鍦ㄨˉ鍏呰祫鏂欎腑鎵惧埌銆
GCLs鍦ㄦ笚閫忚繃绋嬩腑鐨勬笚閫忕郴鏁板彉鍖栧鍥維4鎵绀恒傜敱浜庤仛鍚堢墿娲楄劚瀵艰嚧鍑烘按绠″牭濉烇紝SDS5銆丼WM10鍜孭WM15瀵笲LS鐨勬笚閫忕郴鏁版樉钁楅檷浣 (Wireko and Abichou, 2021; Zainab et al., 2021)銆傚洜姝わ紝浣跨敤娓楅忔恫瀹氭湡鍐叉礂鍑烘按绠°侾WM5鍜孭WM10鐨勬笚閫忕郴鏁板湪娓楅忓垵鏈熸湁鎵涓嬮檷锛屼絾鐢变簬鑱氬悎鐗╂按鍑濊兌鍫靛浜嗘祦閬擄紝鏈缁堝湪涓嶆竻娲楃閬撶殑鎯呭喌涓嬩繚鎸佺ǔ瀹氥傚煎緱娉ㄦ剰鐨勬槸锛孭DM10鐨勬笚閫忕郴鏁扮殑鎬ュ墽澧炲姞褰掑洜浜庤仛鍚堢墿娲楄劚寮曡捣鐨勪紭鍏堟祦鍔 (Zainab et al., 2021; Norris et al., 2022a)銆傚鍥維5鎵绀猴紝PDM10鏌撹壊鍚庣殑鍨傜洿瑙嗗浘(宸︿晶)鏄剧ず鍑虹传鑹茬殑浼樺厛娴佸尯銆備粠1鍖轰晶瑙嗗浘(鍙充晶)鍙互鐪嬪嚭锛屼笌2鍖虹浉姣旓紝鍓╀笅鐨勬按鍑濊兌閲忔洿灏戯紝瀵艰嚧浼樺厛娴佸姩銆
3.3 PB GCL瀵归摑鍦熺熆娑茬殑鑱氬悎鐗╂礂鑴
鑱氬悎鐗╂礂鑴辩殑绱Н璐ㄩ噺銆佽仛鍚堢墿娲楄劚鐨勭櫨鍒嗘瘮鍜屽墿浣欑殑鑱氬悎鐗╁姞杞(琛2)璇佸疄浜嗚仛鍚堢墿鍦ㄦ笚閫忚繃绋嬩腑浠嶱B GCL涓娲楄劚銆傜粡杩囨笚閫忕郴鏁版祴璇曪紝SDS1-BLS鍜孭DS1-BLS鐨勮仛鍚堢墿娈嬬暀閲忓緢灏(娈嬩綑鑱氬悎鐗╄浇鑽<0.5%)锛岃岄儴鍒哖B GCL (SWM5-BLA銆丼WM15-BLS銆丼WM10-BLS鍜孭WM15-BLS)鍑犱箮娌℃湁鑱氬悎鐗╂礂鑴(鑱氬悎鐗╂礂鑴辩櫨鍒嗘瘮<5.0%)銆
鍥2a鏄剧ず浜咷CL(PB GCL鍜孏A)瀵笲LS鐨勬笚閫忕郴鏁帮紝杩欐槸娈嬩綑鑱氬悎鐗╁姞杞界殑鍑芥暟銆傚湪娓楅忚繃绋嬩腑锛岀敱浜庤仛鍚堢墿鐨勬礂鑴憋紝娈嬩綑鑱氬悎鐗╁姞鑽峰皬浜庡垵濮嬭仛鍚堢墿鍔犺嵎锛屽奖鍝嶄簡PB - GCL鐨勬笚閫忕郴鏁般侾B GCL鐨勬笚閫忕郴鏁伴氬父涓庢畫浣欒仛鍚堢墿鍔犺浇鍛堣礋鐩稿叧(鍥2a)銆傚鏋滃彂鐢熶弗閲嶇殑鑱氬悎鐗╂礂鑴憋紝GCL灏嗗叿鏈変綆娈嬬暀鑱氬悎鐗╄礋杞藉拰楂樻笚閫忕郴鏁般備緥濡傦紝鍒濆鑱氬悎鐗╁姞杞借緝浣庣殑SDS1-BLS鐨勮仛鍚堢墿娲楄劚鐜囨渶楂(鑱氬悎鐗╂礂鑴辩巼涓98.5%)锛屽叾瀵笲LS鐨勬按鍔涘鐜囪緝楂(9.2 脳 10-7 m/s)銆傜劧鑰岋紝鍏堝墠鐨勭爺绌跺彂鐜帮紝PB GCL鐨勬笚閫忕郴鏁颁笌娓楅忓悗淇濈暀鐨勮仛鍚堢墿閲忔棤鍏(Wireko and Abichou, 2021; Wireko et al., 2022)銆 渚嬪锛孭DM5-BLS鍜孭DS5-BLS鍏锋湁鐩镐技鐨勬畫浣欒仛鍚堢墿鍔犺浇(~ 4.0%)锛岃屾笚閫忕郴鏁扮浉宸3涓暟閲忕骇(鍥2a)锛屽洜涓鸿仛鍚堢墿娲楄劚閫熺巼鏄奖鍝峆B-GCLs娓楅忕郴鏁扮殑鍏抽敭鍥犵礌銆
SWM5銆丼DW10鍜孭WM10鐨勮仛鍚堢墿娲楄劚鐜囬殢娓楅忕郴鏁扮殑鍙樺寲瓒嬪娍濡傚浘2b鎵绀恒傚湪娓楅忚繃绋嬩腑锛屾笚閫忕郴鏁板拰鑱氬悎鐗╂礂鑴辩巼閫愭笎闄嶄綆(鐢卞彸鍚戝乏)銆傚湪娓楅忓紑濮嬫椂(鍥2b鍙充晶)锛岃繖浜汸B GCL鍏锋湁杈冮珮鐨勬笚閫忕郴鏁(> 1.0 脳 10-10m /s)鍜岃仛鍚堢墿娲楄劚閫熺巼(> 1.0 脳 104 mg/d)锛岃屾渶缁堢殑娓楅忕郴鏁(1.0 脳 <10-10m /s)鍜岃仛鍚堢墿娲楄劚閫熺巼(< 10.0 mg/d)闄嶄綆銆傚洜姝わ紝娓楅忕郴鏁颁笌鑱氬悎鐗╂礂鑴遍熺巼鍛堟鐩稿叧銆傝仛鍚堢墿娲楄劚閫熺巼瓒婇珮锛屾礂鑴辫矾寰勫拰娴侀亾瓒婂锛孭B GCL鐨勬笚閫忕郴鏁拌秺楂樸傚悓鏃讹紝鐢变簬鏇撮珮鐨勬笚閫忕郴鏁帮紝PB GCL涓洿蹇殑娴侀熶細鍐插埛鍑烘洿澶氱殑鑱氬悎鐗╋紝浠庤屽鑷存洿楂樼殑鑱氬悎鐗╂礂鑴遍熺巼 (Norris et al., 2022b)銆
鍥2 (a) GCL瀵笲LS鐨勬笚閫忕郴鏁颁笌娈嬩綑鑱氬悎鐗╁姞鑽风殑鍏崇郴;(b) 娓楅忚繃绋嬩腑娓楅忕郴鏁颁笌鑱氬悎鐗╂礂鑴遍熺巼鐨勫叧绯汇(S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)銆
3.4 鑱氬悎鐗╁姞杞藉娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辩殑褰卞搷
GCL瀵笲LS鐨勬笚閫忕郴鏁颁笌鍒濆鑱氬悎鐗╁姞杞界殑鍏崇郴濡傚浘3a鎵绀恒備綆鍒濆鑱氬悎鐗╁姞杞(PDS1, SDS1, PWM2.5, SDM2.5, PDM5鍜孭WM5)鐨凣A鍜孭B GCLs瀵笲LS涓嶈兘缁存寔杈冧綆鐨勬笚閫忕郴鏁(< 1.0 脳 10-10 m/s)銆傜浉鍙嶏紝鏃犺鍒跺鏂规硶濡備綍锛屽垵濮嬭仛鍚堢墿鍔犺浇杈冮珮(10.0%鍜15.0%)鐨凱B GCL鐨勬笚閫忕郴鏁伴兘杈冧綆(PDW10闄ゅ)銆傝冭檻鍒拌仛鍚堢墿姘村嚌鑳朵細鍫靛鏇村鐨勫瓟闅欑┖闂达紝褰撹仛鍚堢墿鍔犺浇瓒冲澶ф椂锛孭B GCL鐨勬祦閬撴洿绐勩佹洿鏇叉姌锛屾笚閫忕郴鏁版洿浣 (Tian et al., 2016; Li et al., 2021; Zainab et al., 2021)銆傜敱姝ゅ彲瑙侊紝澧炲姞PB GCL鐨勫垵濮嬭仛鍚堢墿鍔犺浇鍙湁鏁堟敼鍠勫叾涓庨摑鍦熺熆娑茬殑鍖栧鐩稿鎬с
鎺у埗PB GCL娓楅忕郴鏁扮殑鏈哄埗鍙栧喅浜庡垵濮嬭仛鍚堢墿鍔犺浇(Zainab et al., 2021)銆侾B GCL鍜孏A鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟鐨勫叧绯诲鍥3b鎵绀恒侴A娴嬭瘯缁撴灉(鍥3b涓殑鏄熷彿)琛ㄦ槑锛岃啫娑﹀湡鐨勬笚閫忕郴鏁颁笌鑶ㄦ鼎鍦熺殑鑶ㄨ儉鎸囨暟鍛堟樉钁楄礋鐩稿叧锛岃啫娑﹀湡鐨勫厖鍒嗚啫鑳鏄淮鎸佷綆娓楅忕郴鏁扮殑蹇呰鏉′欢銆備笌GA鐩告瘮锛屼綆鍒濆鑱氬悎鐗╁姞杞(鈮5.0%)鐨凱B GCL鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟(鍥3b涓湭濉厖鐨勮彵褰)娌℃湁鏄捐憲鐨勮礋鐩稿叧銆係WM5-BLS鐨勬笚閫忕郴鏁(1.9 脳 10-11 m/s)涓嶴WM5-BLA鐨勬笚閫忕郴鏁(8.6 脳 10-12 m/s)鐩镐技锛屼絾鑶ㄨ儉鎸囨暟宸紓杈冨ぇ(17.0 < 29.0 mL/ 2g)銆傜粨鏋滆〃鏄庯紝鑶ㄦ鼎鍦熺殑鑶ㄨ儉鍜岃仛鍚堢墿鐨勫牭濉炴満鍒跺浣庡垵濮嬭仛鍚堢墿鍔犺浇鐨凱B GCL鐨勬笚閫忕郴鏁版湁鍏卞悓鐨勫奖鍝(Tian et al., 2019; Zainab et al., 2021)銆傚鍥3b鐨勫~鍏呰彵褰㈡墍绀猴紝楂樺垵濮嬭仛鍚堢墿鍔犺嵎(鈮10.0%)鐨凱B GCL鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟鏃犲叧锛屼粎鍙楄仛鍚堢墿鍫靛鏈虹悊鎺у埗 (Zainab et al., 2021), 渚嬪锛屽嵆浣胯啫鑳鎸囨暟杈冧綆(15.0 mL/2 g)锛孲WM10-BLS浠嶅叿鏈変綆娓楅忕郴鏁(1.7 脳 10- 12 m/s)銆
鍥3 (a) PB GCL鐨勬笚閫忕郴鏁(S:SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)鍜孏A(甯歌GCL)涓嶣LS(鍚堟垚閾濆湡鐭挎恫)鐨勫叧绯伙紝杩欐槸鍒濆鑱氬悎鐗╁姞杞界殑鍑芥暟;(b) PB GCL鍜孏A瀵笵I姘村拰閾濆湡鐭挎恫鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟鐨勫叧绯汇
鏁翠釜娓楅忚繃绋嬩腑PB GCL鐨勬笚閫忕郴鏁颁笌鑱氬悎鐗╂礂鑴遍熺巼鐨勫叧绯诲鍥4鎵绀恒傚垵濮嬭仛鍚堢墿鍔犺浇杈冮珮鐨凱BGCL瀵笲LS鐨勫寲瀛︾浉瀹规ц緝濂姐係DS1-BLS鑱氬悎鐗╂礂鑴辩巼鏈楂(26192.7% /d, 91674.4 mg/d)锛屾笚閫忕郴鏁版渶楂(9.2 脳 10-7 m/s)锛 SWM15-BLS鑱氬悎鐗╂礂鑴辩巼鏈浣(0.016%/d)锛屾笚閫忕郴鏁版渶浣(6.6 脳 10-13 m/s)銆傚鍥4鎵绀猴紝鑱氬悎鐗╂礂鑴遍熺巼涓嶴AP鎴朠AC澧炲己鐨凱B GCL鐨勬笚閫忕郴鏁板憟姝g浉鍏(瑙3.3)銆備緥濡傦紝PWM2.5璇曟牱鍏锋湁杈冮珮鐨勬笚閫忕郴鏁(8.2 脳 10-7 m/s)锛屽洜涓鸿仛鍚堢墿姘村嚌鑳剁敱浜庤緝浣庣殑鍒濆鑱氬悎鐗╁姞杞借屼笉鑳藉牭濉炴祦閬撱傚悓鏃讹紝PWM2.5-BLS鐨勮仛鍚堢墿娲楄劚鐜囪緝楂(83,261.6 mg/d)锛屽鑷撮珮娓楅忕郴鏁扮殑鍐叉礂鏁堟灉鏇翠负鏄捐憲銆傜劧鑰岋紝鐢变簬瓒冲鐨勮仛鍚堢墿鍔犺浇锛孭WM15-BLS鐨勬笚閫忕郴鏁(1.5 脳 10-12 m/s)鍜岃仛鍚堢墿娲楄劚鐜(4.3 mg/d)杩滀綆浜嶱WM2.5-BLS銆
鍥4 褰撴笚閫廈LS(鍚堟垚閾濆湡鐭挎恫)鏃讹紝PB GCL (S: SAP澧炲己, P: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)鐨勬笚閫忕郴鏁颁笌骞冲潎鑱氬悎鐗╂礂鑴遍熺巼(鍦ㄨˉ鍏呮潗鏂欎腑瀹氫箟)鐨勫叧绯汇侾AC (a)鍜孲AP (b)澧炲己PB GCL鐨勮仛鍚堢墿娲楄劚鐜(mg/d);PAC (c)鍜孲AP (d)澧炲己PB GCL鐨勮仛鍚堢墿娲楄劚鐜(%/d)銆
3.5 鑱氬悎鐗╃绫荤殑褰卞搷
濡傚浘3a鎵绀猴紝钃濊壊绗﹀彿浠h〃SAP(浜よ仈鑱氬悎鐗)澧炲己鐨凱B GCL锛岀孩鑹茬鍙蜂唬琛≒AC澧炲己鐨凣CL(绾挎ц仛鍚堢墿)銆傚浜庡共娉曞拰婀挎硶鍒跺鐨凱B GCL, SAP澧炲己鐨凣CL瀵笲LS鐨勬笚閫忕郴鏁颁綆浜嶱AC澧炲己鐨凣CL锛岃鏄庤仛鍚堢墿绫诲瀷褰卞搷鍏舵笚閫忕郴鏁般備緥濡傦紝SDM5-BLS鐨勬笚閫忕郴鏁拌繙浣庝簬PDM5-BLS (3.8 脳10-11 m/s < 6.0 脳10-9 m/s)銆傜劧鑰岋紝PWM15-BLS鍜孲WM15-BLS鐨勬笚閫忕郴鏁拌緝浣(~ 1.0 脳 10-12 m/s)锛岃繖琛ㄦ槑鑱氬悎鐗╃被鍨嬪鑱氬悎鐗╁姞杞戒负15.0%鏃禤B GCL鐨勬笚閫忕郴鏁板彲鑳芥病鏈夋樉钁楀奖鍝(Zainab et al., 2021)銆傚浜庨噰鐢ㄥ共鎾掓硶鍒跺鐨凱B GCL锛屽叾娓楅忕郴鏁颁笌鑱氬悎鐗╃被鍨嬫棤鍏炽係DS1鍜孭DS1銆丼DS2.5鍜孭DS2.5銆丼DS5鍜孭DS5鐨勫BLS鐨勬笚閫忕郴鏁版帴杩戙
浠ュ線鐨勭爺绌舵姤閬撲簡鑱氬悎鐗╃被鍨嬪PB GCL娓楅忕郴鏁版帶鍒舵満鍒剁殑褰卞搷 (Zainab et al., 2021)銆傜嚎鎬ц仛鍚堢墿(PAC)鏄按婧舵х殑锛屽彲浠ュ舰鎴愮矘鎬ц仛鍚堢墿姘村嚌鑳讹紝浣胯啫娑﹀湡棰楃矑缁撳悎鏇寸揣瀵嗭紝浣縋B GCL鍏锋湁鏇翠綆鐨勫瓟闅欑巼鍜屽瓟寰 (Chimamkpam et al., 2011)銆備氦鑱旇仛鍚堢墿(SAP)鍙互鍚告敹涓嶆祦鍔ㄧ殑姘达紝褰㈡垚涓夌淮姘村嚌鑳讹紝鍫靛娴侀亾锛屽鑷存笚閫忕郴鏁颁綆(Scalia et al., 2014; Di Emidio et al., 2015; Tian et al., 2019)銆
姝ゅ锛岄櫎浜哠DS1-BLS鍜孭DS1-BLS澶栵紝SAP澧炲己鐨凣CL鐨勮仛鍚堢墿娲楄劚鐜囦綆浜嶱AC澧炲己鐨凣CL(鍥4)銆備笌SAP涓嶅悓锛孭AC鏇村叿姘存憾鎬э紝鏇村鏄撻殢娓楅忔恫绉诲姩锛岃繖浣垮緱PAC澧炲己鐨凣CL鐨勮仛鍚堢墿娲楄劚鐜囨洿楂(Wireko et al., 2022).
3.6鍒跺鏂规硶鐨勫奖鍝
濡傚浘3a鎵绀猴紝鍒跺鏂规硶(涓夎褰:骞叉贩鍚堬紝鏂瑰舰:骞叉拻锛屽渾褰:婀挎贩鍚)涔熸帶鍒剁潃PB GCL鐨勬笚閫忕郴鏁般備笌婀挎贩娉曞拰骞叉贩娉曠浉姣旓紝閲囩敤骞叉拻娉曞埗澶囩殑PB GCL鍏锋湁鏇村ソ鐨勬按鍔涘鎬ц兘銆侾DS2.5-BLS鍏锋湁涓嶱WM15-BLS鐩镐技鐨勬笚閫忕郴鏁(~ 10-12 m/s)锛屼絾鍗充娇鍒濆鑱氬悎鐗╁姞杞界浉鍚(2.5%)锛孭DS2.5-BLS鐨勬笚閫忕郴鏁颁篃杩滀綆浜嶱WM2.5-BLS (8.2 脳 10-7 m/s)銆傜劧鑰岋紝鍦ㄤ綆鍒濆鑱氬悎鐗╁姞杞(PDS1-BLS鍜孲DS1-BLS)鐨勬儏鍐典笅锛屽共鎾扨B GCL鐨勬笚閫忕郴鏁颁笅闄嶅埌10-7 m/s锛岃繖琛ㄦ槑骞叉拻PB GCL浠嶇劧闇瑕佽冻澶熺殑鑱氬悎鐗╁姞杞芥潵淇濇寔杈冧綆鐨勬笚閫忕郴鏁般傛澶栵紝婀挎贩鍚堢殑PB GCL鐨勬笚閫忕郴鏁板彲鑳戒綆浜庡共娣峰悎鐨凱B GCL銆備緥濡傦紝SWM2.5-BLS鐨勬笚閫忕郴鏁颁綆浜嶴DM2.5-BLS (1.0 脳 10-12 < 6.3 脳 10-7 m/s)銆傝鍒跺鏂规硶涓昏閫氳繃褰卞搷鑱氬悎鐗╂礂鑴辨潵鎺у埗PB GCL鐨勬笚閫忕郴鏁般
PAC鍜孲AP閮芥槸鐢卞叿鏈変翰姘存у畼鑳藉洟(濡傜緹鍩哄拰缇у熀鎴栫景鍩)鐨勮仛鍚堢墿閾剧粍鎴愶紝杩欎簺瀹樿兘鍥㈠彲浠ョ粨鍚堟按鍒嗗瓙骞堕氳繃姘㈤敭褰㈡垚姘村嚌鑳 (Soppirnath and Aminabhavi, 2002; Ahmed, 2015; Deng et al., 2006; Behera and Mahanwar, 2020)銆 濡傚浘S6a鎵绀猴紝PWM5鏍峰搧涓病鏈夊彲瑙佺殑鑱氬悎鐗╂按鍑濊兌锛岃繖鏄敱浜庢箍娣峰悎鏂规硶鐨勬搷浣滐紝濡傚湪姘存荡涓姞鐑悈鎷屾垨楂樻俯骞茬嚗锛屽彲鑳戒細鐮村潖鑱氬悎鐗╅摼锛屽鑷存洿澶氱殑鑱氬悎鐗╄娲楄劚(Scalia, 2012)銆傜劧鑰岋紝PDM5鏍峰搧涓彲瑙侀粡鎬ц仛鍚堢墿姘村嚌鑳朵笉鍧囧寑鍦版贩鍚堝湪鑶ㄦ鼎鍦熶腑锛屾洿瀹规槗娲楄劚(鍥維6b)銆侾DS5鍦ㄨ啫娑﹀湡涓嬪舰鎴愪竴灞傜矘鎬ц仛鍚堢墿姘村嚌鑳(鍥維6c)銆傛澶栵紝鐢变簬娴佸叆渚х殑鑱氬悎鐗╁緢闅剧┛杩囪啫娑﹀湡灞傦紝鍥犳鍑犱箮娌℃湁鑱氬悎鐗╄縼绉诲埌娴佸嚭渚с傚洜姝わ紝骞叉拻PDS5涓殑鑱氬悎鐗╅毦浠ユ礂鑴变笖鍒嗗竷鍧囧寑锛屽鑷存笚閫廈LS鏃讹紝鑱氬悎鐗╂礂鑴遍熺巼(4.1mg/d)鍜屾笚閫忕郴鏁(1.6 脳 10-12 m/s)浣庝簬婀挎贩鍚堟垨骞叉贩鍚堢殑PB GCL(PWM5鎴朠DM5) (瑙佸浘4)銆
缁间笂鎵杩帮紝涓嶅悓鐨勫埗澶囨柟娉曞PB GCL鐨勬笚閫忕郴鏁版湁鏄捐憲褰卞搷锛屼笖鍚勬湁浼樼己鐐广傛箍娣峰悎娉曞埗澶囩殑PB GCL鐨勬按鍔涙ц兘鐣ュソ浜庡共娣峰悎娉曞埗澶囩殑PB GCL銆 浣嗘箍娣峰悎娉曟搷浣滆緝涓哄鏉傦紝鑰屽共娣峰悎娉曞彧杩涜绠鍗曠殑鐗╃悊娣峰悎銆傚煎緱娉ㄦ剰鐨勬槸锛岀敱浜庤仛鍚堢墿鍒嗗竷涓嶅潎鍖锛屽共娣稰B GCL瀹规槗鍙戠敓浼樺厛娴佸姩锛屼粠鑰屽鑷存洿楂樼殑娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辩巼銆備笌涓婅堪涓ょ鍒跺鏂规硶鐩告瘮锛屽埗澶囩畝鍗曠殑骞叉拻PB GCL鑱氬悎鐗╂礂鑴遍噺灏戯紝瀵笲LS鐨勬笚閫忕郴鏁拌緝浣庛傜劧鑰岋紝灏嗚仛鍚堢墿灞傚潎鍖鍦板浐瀹氬湪鑶ㄦ鼎鍦熺殑渚ч潰鏄竴涓妧鏈睆闅滐紝濡傞伩鍏嶅共娲掓硶鍒跺鐨凱B GCL鍦ㄨ繍杈撳拰鏂藉伐杩囩▼涓仛鍚堢墿灞傜殑鎹熷潖銆
3.7 閾濆湡鐭挎恫鍖栧鎴愬垎鐨勫奖鍝
GCL鐨勬笚閫忕郴鏁颁笌娓楅忔恫绂诲瓙寮哄害鐨勫叧绯诲鍥5鎵绀恒侭PC GCL (CP6.3, CP7.5, CP10.8鍜孋P12.1锛屾暟瀛椾唬琛ㄥ垵濮嬭仛鍚堢墿鍔犺浇)鍜岄摑鍦熺熆娑(GX-A1: 224.5 mM, SD-A: 620.3 mM)鏉ヨ嚜Li et al.锛 2021銆傚幓绂诲瓙姘(绂诲瓙寮哄害= 0 mM)娓楅忔椂锛孏A鐨勬笚閫忕郴鏁拌緝浣庯紝鑰岄殢鐫娓楅忔恫浣(閾濆湡鐭挎恫)绂诲瓙寮哄害鐨勫鍔狅紝GA鐨勬笚閫忕郴鏁版樉钁楁彁楂樸傛澶栵紝PB GCL鐨勬笚閫忕郴鏁颁篃涓庢笚閫忔恫浣撶殑绂诲瓙寮哄害鍛堟鐩稿叧 (Chen et al., 2019; Li et al., 2021; Zainab et al., 2021)銆侾B GCL鍦ㄧ瀛愬己搴﹁緝浣庣殑閾濆湡鐭挎恫(BLA鍜孏X-A1: < 500.0 mM)涓粛淇濇寔杈冧綆鐨勬笚閫忕郴鏁(<1.0 脳 10-10m /s)锛岃孭B GCL(PWM5鍜孋P6.3)瀵圭瀛愬己搴﹁緝楂樼殑閾濆湡鐭挎恫(BLS鍜孲D-A: > 500.0 mM)鐨勬笚閫忕郴鏁版彁楂(> 1.0 脳 10-10m /s)銆傜劧鑰岋紝鍗充娇浠LS涓烘笚閫忔恫浣擄紝SWM5鐨勬笚閫忕郴鏁颁篃杈冧綆(1.7脳 10-11 m/s)銆
鍥5 PB GCL瀵笵I姘村拰閾濆湡鐭挎恫鐨勬笚閫忕郴鏁颁笌绂诲瓙寮哄害鐨勫叧绯(CP6.3銆丆P7.5銆丆P10.8鍜孋P12.1鏉ヨ嚜Li et al.锛 2021;GX-A1: 224.5 mM, SD-A: 620.3 mM; BLS: 622.5 mM; BLA: 156.9mM)銆侴A:甯歌GCL;PWM5 (PAC 澧炲己)鍜孲WM5 (SAP澧炲己)鏄箍娣峰悎娉曞埗澶囩殑鍒濆鑱氬悎鐗╁姞杞戒负5%鐨凱B GCL銆
濡傝〃3鎵绀猴紝PB GCL(SWM5鍜孭WM5)鍦˙LA娓楅忎笅鐨勮仛鍚堢墿娲楄劚鐜囦綆浜嶣LS銆傝仛鍚堢墿鏋勮薄瀵归摑鍦熺熆娑茬殑鍖栧鎴愬垎鏁忔劅(Besra et al., 2002; Tian et al., 2019; Wireko and Abichou, 2021)銆傚叿鏈夎緝楂樼瀛愬己搴︾殑BLS閫氳繃鏀瑰彉鏋勮薄鏉ユ帶鍒惰仛鍚堢墿姘村嚌鑳剁殑绮樺害鍜岃縼绉荤巼锛屼粠鑰屾彁楂樹簡PB GCL鐨勮仛鍚堢墿娲楄劚鐜(Klenina and Lebedeva, 1983; Kurenkov, 1997; Schweins et al., 2003)銆傛澶栵紝澶嶅悎鏀规т娇PB GCL鍦ㄦ笚閫忕叅鐕冪儳浜х墿(CCP)娓楁护娑叉椂鐨勮仛鍚堢墿娲楄劚鐜囦綆浜庡崟涓鏀规(Wang et al., 2022)銆備笌2000.0 mM NaCl鐩告瘮锛500.0 mM CaCl2瀵筆B GCL鐨勮仛鍚堢墿娲楄劚鐜囨洿楂橈紝璇存槑闄や簡绂诲瓙寮哄害澶栵紝浜屼环闃崇瀛愪篃褰卞搷浜嗚仛鍚堢墿鐨勬礂鑴辩巼 (Wireko and Abichou, 2021)銆
琛3 涓嶅悓娓楅忔恫瀵筆B GCL鐨勮仛鍚堢墿娲楄劚鐜(CCP娓楁护娑叉潵鑷猈ang et al.锛2022;NaCl鍜孋aCl2婧舵恫鏉ヨ嚜Wireko鍜孉bichou, 2021;PWM5 (PAC澧炲己)鍜孲WM5 (SAP澧炲己)鏄箍娣峰悎娉曞埗澶囩殑鍒濆鑱氬悎鐗╄礋杞戒负5%鐨凱B GCL銆
缁间笂鎵杩帮紝鍓嶄汉鐨勭爺绌惰涓鸿仛鍚堢墿娲楄劚浼氬奖鍝峆B GCL鐨勬笚閫忕郴鏁帮紝鑱氬悎鐗╂礂鑴变細鎵撳紑娴侀亾锛屾彁楂樻笚閫忕郴鏁般傛澶栵紝鑱氬悎鐗╂礂鑴遍熺巼鍙互浣滀负璇勪环PB GCL闀挎湡娓楅忕郴鏁扮殑鍏抽敭鍥犵礌銆侾B GCL锛屽SWM10 (<1.0 mg/d)锛屽湪娓楅忚繃绋嬩腑淇濇寔杈冧綆鐨勮仛鍚堢墿娲楄劚鐜囷紝鍏锋湁杈冮珮鐨勬畫浣欒仛鍚堢墿鍔犺浇(9.9%)鍜岃緝浣庣殑娓楅忕郴鏁(1.7 脳 10-12 m/s)銆傝繖浜涗綆鑱氬悎鐗╂礂鑴辩巼鐨凱B GCL淇濈暀浜嗕竴瀹氳川閲忕殑鑱氬悎鐗╋紝鍫靛浜嗘祦閬擄紝瀵艰嚧PB GCL浣滀负閾濆湡鐭挎恫鐨勪笉閫忔按灞忛殰锛屽叾娓楅忕郴鏁颁綆锛岃璁″鍛介暱銆 鐒惰岋紝涓嶅悓璁捐骞翠唤瀵硅仛鍚堢墿娲楄劚閫熺巼鐨勫叿浣撹姹傝繕闇瑕佽繘涓姝ョ殑鐮旂┒鍜屾洿澶氱殑鏁版嵁鏀寔銆
3.8 鎺у埗娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辩殑鏈哄埗
3.8.1 PB GCL涓庤仛鍚堢墿姘村嚌鑳剁殑寰缁撴瀯
缁廈LS娓楅忓悗PB gcl鍜孏A鐨凷EM鍥惧儚濡傚浘6鎵绀恒侴A璇曟牱涓殑鑶ㄦ鼎鍦熷洟绨囧憟鐗囧眰鐘剁粨鏋勶紝瀛旈殭浼楀锛岀矑闂村瓟闅欒緝澶э紝鐩村緞涓5 ~ 10 渭m锛岃繖浣垮緱GABLS鍏锋湁杈冮珮鐨勬笚閫忕郴鏁(鍥6a)銆傚鍥6b鎵绀猴紝PWM10-BLS褰㈡垚鑱氬悎鐗╂按鍑濊兌绲嚌浣擄紝濉厖绮掗棿瀛旈殭锛屽牭濉炲瓟闅欑┖闂淬係WM10-BLS鏍峰搧鍚湁鑱氬悎鐗╂按鍑濊兌鑶滐紝瑕嗙洊鑶ㄦ鼎鍦熻〃闈㈡垨闃诲绮掗棿瀛旈殭(鍥6c)銆係DM10-BLS鐨凷EM鍥惧儚鏄剧ず锛岃啫娑﹀湡鍥㈢皣琚玈AP姘村嚌鑳剁洿鎺ュ寘瑁癸紝瀵艰嚧鑶ㄦ鼎鍦熶箣闂寸殑娌熷鍫靛(鍥6d)銆傚甫璐熺數鑽风殑闃寸瀛愯仛鍚堢墿鍊惧悜浜庨氳繃闈欑數鍚稿紩闄勭潃鍦ㄥ甫姝g數鐨勭矘鍦熻竟缂樹笂锛屾垨閫氳繃闃崇瀛愭ˉ闄勭潃鍦ㄥ甫璐熺數鐨勭矘鍦熻〃闈笂(Deng et al., 2006; Theng, 2012; Shi et al., 2022)銆備笉鍚岀粨鏋勭殑鑱氬悎鐗╂按鍑濊兌鍫靛浜嗘祦鍔ㄩ氶亾锛屽鑷碢B GCL瀵笲LS鐨勬笚閫忕郴鏁拌緝浣庛
鍥6 GA(甯歌GCL)鍜孭B GCL缁廈LS(鍚堟垚閾濆湡鐭挎恫)娓楅忓悗鐨凷EM鍥惧儚:(a) GA-BLS;(b) PWM10 (PAC澧炲己锛屽垵濮嬭仛鍚堢墿鍔犺浇:10%锛屾箍娣峰悎娉)-BLS;(c) SWM10 (SAP澧炲己锛屽垵濮嬭仛鍚堢墿鍔犺浇:10%锛屾箍娣峰悎娉)-BLS;(d) SDM10 (SAP澧炲己锛屽垵濮嬭仛鍚堢墿鍔犺浇:10%锛屽共娣锋硶)-BLS銆
鍐诲共鑱氬悎鐗╁湪閾濆湡鐭挎恫涓按鍖栫殑SEM鍥惧儚濡傚浘7鎵绀恒傞摑鍦熺熆娑蹭腑闃崇瀛愪笌鑱氬悎鐗╀腑甯﹁礋鐢靛畼鑳藉洟鐨勭浉浜掍綔鐢ㄦ敼鍙樹簡鑱氬悎鐗╂按鍑濊兌鐨勬瀯璞(Besra et al., 2002; Tian et al., 2019)銆傚鍥7a鍜宑鎵绀猴紝涓嶣LA姘村寲鍚(绂诲瓙寮哄害杈冧綆锛156.9 mM)锛岃仛鍚堢墿閾惧欢浼革紝褰㈡垚鐗囧眰鍫嗗彔鐨勮仛鍚堢墿姘村嚌鑳剁墖灞傜粨鏋勩傜劧鑰岋紝鐢变簬缇板熀绛夊甫鐢靛畼鑳藉洟鐨勪腑鍜屼綔鐢紝BLS涓殑鑱氬悎鐗╂瀯璞(绂诲瓙寮哄害鏇撮珮锛622.5 mM)琚敹缂╁拰鍗锋洸(鍥7b鍜宒) (Peng and Wu, 1999; Tian et al., 2019)銆侾B GCL瀵笲LS鍏锋湁杈冮珮鐨勬笚閫忕郴鏁帮紝杩欐槸鐢变簬鑱氬悎鐗╂按鍑濊兌鐨勫穿濉屼娇鍫靛鐨勫瓟闅欐墦寮锛屼粠鑰屽鑷翠簡鏋勮薄鐨勫彉鍖栥傚悓鏃讹紝杈冮珮鐨勭瀛愬己搴﹀紩璧风殑鏋勮薄鍙樺寲鍓婂急浜嗚仛鍚堢墿鐨勫惛姘磋兘鍔涳紝瀵艰嚧鑱氬悎鐗╂按鍑濊兌绮樺害杈冧綆锛屽鏄撹娲楄劚(鑱氬悎鐗╂礂鑴辩巼杈冮珮) (Schweins and Huber, 2001; Schweins et al., 2006; Chen et al., 2019; Li et al., 2021; Wireko and Abichou, 2021)銆
鍥7 鍐诲共PAC(鑱氶槾绂诲瓙绾ょ淮绱)鎴朣AP(楂樺惛姘存ц仛鍚堢墿)涓嶣LA(瀹為檯閾濆湡鐭挎恫)鎴朆LS(鍚堟垚閾濆湡鐭挎恫)姘村寲鐨凷EM鍥惧儚: (a) PAC-BLA; (b) PAC-BLS; (c) SAP-BLA; (d) SAP-BLS.
3.8.2 绮樺害瀵硅仛鍚堢墿娲楄劚鐨勫奖鍝
鑱氬悎鐗-鑶ㄦ鼎鍦熸祮鏂欑殑绮樺害濡傝〃4鍜屽浘S7鎵绀恒傛祮鏂欑矘搴﹂殢鑱氬悎鐗╁垵濮嬪姞杞介噺鐨勫鍔犺屽鍔狅紝PAC -鑶ㄦ鼎鍦熷拰SAP -鑶ㄦ鼎鍦熸祮鏂欑矘搴︾殑澧炲姞骞呭害涓嶅悓銆傛澶栵紝鍒跺鏂规硶鍜岄摑鍦熺熆娑插娴嗘枡鐨勭矘搴︿篃鏈夋帶鍒朵綔鐢ㄣ傜敱琛4鍜屽浘S7鍙煡锛岀敱浜庨摑鍦熺熆娑茬殑绂诲瓙寮哄害涓嶅悓锛孊LS鍒跺鐨勬祮娑茬矘搴︿綆浜嶣LA鍒跺鐨勬祮娑茬矘搴︺傝緝楂樼殑绂诲瓙寮哄害鍙互浣胯仛鍚堢墿鏋勮薄鍗锋洸锛屼粠鑰岄檷浣庢祮鏂欑殑绮樺害銆傛澶栵紝鑰冭檻鍒版箍娣峰悎杩囩▼涓殑鎿嶄綔鍙兘浼氱牬鍧忚仛鍚堢墿澶у垎瀛愰摼锛屽共娣峰悎娴嗘枡鐨勭矘搴﹂珮浜庢箍娣峰悎娴嗘枡銆
琛4 涓庨摑鍦熺熆娑叉贩鍚堢殑鑶ㄦ鼎鍦熸祮鏂欑殑绮樺害(GA:甯歌GCL;S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;鏁板瓧琛ㄧず涓庨摑鍦熺熆娑叉贩鍚堢殑鍒濆鑱氬悎鐗╁姞鑽凤紝%)(BLA:瀹為檯閾濆湡鐭挎恫;BLS:鍚堟垚閾濆湡鐭挎恫)銆
鐢辫〃5鍜屽浘S8鍙煡锛屽湪PB GCL涓舰鎴愮殑鑱氬悎鐗╂按鍑濊兌鐨勭矘搴︽樉钁楀奖鍝嶆笚閫忚繃绋嬩腑鑱氬悎鐗╃殑娲楄劚閫熺巼銆傚浘S8涓殑1鍜2琛ㄦ槑锛孭B GCL鍒濆鑱氬悎鐗╁姞杞介珮锛岃仛鍚堢墿姘村嚌鑳剁矘搴﹀鍔狅紝鑱氬悎鐗╂礂鑴遍熺巼闄嶄綆銆傚浘S8涓殑3鍜4琛ㄦ槑锛岄摑鍦熺熆娑茬殑绂诲瓙寮哄害閫氳繃鏀瑰彉鑱氬悎鐗╂按鍑濊兌鐨勭矘搴︽潵鎺у埗鑱氬悎鐗╃殑娲楄劚閫熺巼銆
琛5 鑱氬悎鐗-鑶ㄦ鼎鍦熸祮鏂欑殑鑱氬悎鐗╂礂鑴遍熺巼鍜岀矘搴︺(BLA:瀹為檯閾濆湡鐭挎恫;BLS:鍚堟垚閾濆湡鐭挎恫;S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮; GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)銆
鎬讳箣锛岄摑鍦熺熆娑茬殑鍖栧鎬ц川瀵筆B GCL鐨勮仛鍚堢墿娲楄劚鍜屾笚閫忕郴鏁伴兘鏈夊奖鍝嶃傜瀛愬己搴﹁緝楂樼殑BLS鎶戝埗浜嗚啫娑﹀湡鐨勬笚閫忚啫鑳锛屼粠鑰屾彁楂樹簡GCL鐨勬笚閫忕郴鏁般傛澶栵紝鐢变簬绂诲瓙寮哄害楂橈紝PB GCL涓殑鑱氬悎鐗╂按鍑濊兌缁撴瀯宕╂簝銆傛瀯璞$殑鏀瑰彉閫氳繃闄嶄綆鑱氬悎鐗╃矘搴﹀鑷磋仛鍚堢墿娲楄劚閲忓鍔狅紝閫氳繃鎵撳紑鏇村鍫靛鐨勫瓟闅欑┖闂村鑷碢B GCL鐨勬笚閫忕郴鏁版彁楂樸
4 缁撹
鏈爺绌惰皟鏌ヤ簡鑱氬悎鐗╁垵濮嬪姞鑽枫佽仛鍚堢墿绫诲瀷銆佸埗澶囨柟娉曘侀摑鍦熺熆娑茬瓑鍥犵礌瀵硅仛鍚堢墿-鑶ㄦ鼎鍦熷湡宸ュ悎鎴愯啫娑﹀湡琛灚(PB GCL)娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辨х殑褰卞搷銆傚井灏哄害鍒嗘瀽琛ㄦ槑锛岃仛鍚堢墿閫氳繃闃崇瀛愭ˉ鎺ヤ笌钂欒劚鐭冲琛ㄩ潰缁撳悎銆傜敱浜庤仛鍚堢墿鐨勫牭濉炴満鍒讹紝鍒濆鑱氬悎鐗╁姞杞藉厖瓒崇殑PB GCL瀵归摑鍦熺熆娑茬殑鍖栧鐩稿鎬т紭浜庡父瑙凣CL (GA)銆備綆鍒濆鑱氬悎鐗╁姞杞界殑PB GCL鍏锋湁杈冮珮鐨勮仛鍚堢墿娲楄劚鐜囷紝鍥犱负楂樼殑娓楅忕郴鏁板鑷磋仛鍚堢墿鐨勬樉鐫鍐叉礂鏁堟灉銆傜敱浜嶱AC(鑱氶槾绂诲瓙绾ょ淮绱)澧炲己鐨凣CL鍏锋湁瀹屽叏鐨勬按婧舵э紝鍥犳鍏惰仛鍚堢墿娲楄劚鐜囬珮浜嶴AP(楂樺惛姘磋仛鍚堢墿)澧炲己鐨凣CL銆傛澶栵紝鐢变簬鑱氬悎鐗╁眰鍧囧寑锛岃仛鍚堢墿杩佺Щ鍥伴毦锛屽共娲扨B GCL鍏锋湁杈冧綆鐨勬笚閫忕郴鏁板拰鑱氬悎鐗╂礂鑴遍熺巼銆傚煎緱娉ㄦ剰鐨勬槸锛岄珮绂诲瓙寮哄害寮曡捣鐨勮仛鍚堢墿鏋勮薄鍙樺寲鍙互閫氳繃鎵撳紑瀛旈殭鏉ユ彁楂楶B GCL鐨勬笚閫忕郴鏁帮紝閫氳繃闄嶄綆鑱氬悎鐗╃殑绮樺害鏉ユ彁楂樿仛鍚堢墿鐨勬礂鑴遍熺巼銆
鍙傝冩枃鐚
Ahmed, E., 2015. Hydrogel: Preparation, characterization, and applications: a review.J. Adv. Res. 6, 105鈥121. https://doi.org/10.1016/j.jare.2013.07.006.
ASTM, 2010. Standard test method for measuring the exchange complex and cation exchange capacity of inorganic fine-grained soils. In: ASTM D7503, West Conshohocken, PA.
ASTM, 2011. Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners. In: ASTM D5890. West, Conshohocken, PA.
ASTM, 2012. Standard test method for evaluation of hydraulic properties of geosynthetic clay liners permeated with potentially incompatible aqueous solutions. In: ASTM D6766, West Conshohocken, PA.
ASTM, 2016. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. In: ASTM D5084, West Conshohocken, PA.
ASTM, 2017. Standard test method for total carbon and organic carbon in water by ultraviolet, or persulfate oxidation, or both, and infrared detection. In: ASTM D4839, West Conshohocken, PA.
Behera, S., Mahanwar, P.A., 2020. Superabsorbent polymers in agriculture and other applications: a review. Polym.-Plastics Technol. Mater. 59 (4), 341鈥356. https://doi.org/10.1080/25740881.2019.1647239.
Benson, C.H., Wang, X., Gassner, F.W., Foo, D.C.F., 2008. Hydraulic conductivity of two geosynthetic clay liners permeated with an aluminum residue leachate. In: Proceedings 1st Pan American Geosynthetics Conference and Exhibition, Cancun (Mexico). Industrial Fabrics Association International (IFAI), Roseville, MN, USA, pp. 94鈥101.
Benson, C., Oren, A., Gates, W., 2010. Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalkaline solution. Geotext. Geomembr. 28 (2), 206鈥218. https://doi.org/10.1016/j.geotexmem.2009.10.002.
Besra, L., Sengupta, D., Roy, S., Ay, P., 2002. Flocculation and dewatering of kaolin suspensions in the presence of polyacrylamide and surfactants. Int. J. Miner. Process. 66, 203鈥232. https://doi.org/10.1016/S0301-7516(02)00066-2.
Bouazza, A., Gates, W.P., 2014. Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry. Geosynth. Int. 221, 151鈥167.https://doi.org/10.1680/gein.14.00006.
Bradshaw, S.L., Benson, C.H., 2014. Effect of municipal solid waste leachate on hydraulic conductivity and exchange complex of geosynthetic clay liners. J. Geotech. Geoenviron. 140 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001050, 04013038.
Bradshaw, S.L., Benson, C.H., Scalia IV, J., 2013. Hydration and cation exchange during subgrade hydration and effect on hydraulic conductivity of geosynthetic clay liners. Geotext. Geomembr. 139, 526鈥538. https://doi.org/10.1061/(ASCE)GT.1943-
5606.0000793.
Bradshaw, S.L., Benson, C.H., Rauen, T.L., 2015. Hydraulic conductivity of geosynthetic clay liners to recirculated municipal solidwaste leachates. J. Geotech. Geoenviron. 142 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001387, 04015074.
Chai, J.C., Prongmanee, N., 2020. Barrier properties of a geosynthetic clay liner using polymerized sodium bentonite. Geotext. Geomembr. 48, 392鈥399. https://doi.org/10.1016/j.geotexmem.2019.12.010.
Chen, J.N., Benson, C.H., Edil, T.B., 2018. Hydraulic conductivity of geosynthetic clay liners with sodium bentonite to coal combustion product leachates. J. Geotech. Geoenviron. 144 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001844, 04018008.
Chen, J.N., Salihoglu, H., Benson, C.H., Likos, W.J., Edil, T.B., 2019. Hydraulic conductivity of bentonite鈥損olymer composite geosynthetic clay liners permeated with coal combustion product leachates. J. Geotech. Geoenviron. 145 https://doi.org/10.1061/(ASCE)GT.1943-5606.0002105, 04019038.
Chimamkpam, T.O., Rasteiro, M.G., Garcia, F.A.P., Antunes, E., Ferreira, P., Hunkeler, D., Wandrey, C., 2011. Solution viscosity and flocculation characteristics of linear polymeric flocculants in various media. Chem. Eng. Res. Des. 89,1037鈥1044. https://doi.org/10.1016/j.cherd.2010.10.022.
Deng, Y., Dixon, J., White, G., Loeppert, R., Juo, A., 2006. Bonding between polyacrylamide and smectite. Colloids Surf. A Physicochem. Eng. Asp. 281 (1),82鈥91. https://doi.org/10.1016/j.colsurfa.2006.02.030.
Di Emidio, G., Mazzieri, F., Verastegui-Flores, R.D., Van Impe, W., Bezuijen, A., 2015. Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners. Geosynth. Int. 22, 125鈥137. https://doi.org/10.1680/gein.14.00036.
Du, Y.J., Shen, S.Q., Tian, K., Yang, Y.L., 2021. Effect of polymer amendment on hydraulic conductivity of bentonite in calcium chloride solutions. J. Mater. Civ. Eng. 33 https://doi.org/10.1061/(ASCE)MT.1943-5533.0003518, 04020452.
Jo, H.Y., Benson, C.H., Shackelford, C.D., Lee, J.M., Edil, T.B., 2005. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. J. Geotech. Geoenviron. Eng. 131 (4), 405鈥417.
Jo, H.Y., Katsumi, T., Benson, C.H., Edil, T.B., 2001. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. J. Geotech. Geoenviron. 127, 557鈥567. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(557).
Kadajji, V.G., Betageri, G.V., 2011. Water soluble polymers for pharmaceutical applications. Polymers 3, 1972鈥2009. https://doi.org/10.3390/polym3041972.
Katsumi, T., Ishimori, H., Ogawa, A., Yoshikawa, K., Hanamoto, K., andR. Fukagawa., 2007. Hydraulic conductivity of nonprehydrated geosynthetic clay liners permeated with inorganic solutions and waste leachates. Soils Found. 47, 79鈥96. https://doi.org/10.3208/sandf.47.79.
Katsumi, T., Ishimori, H., Onikata, M., Fukagawa, R., 2008. Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions. Geotext. Geomembr. 26, 14鈥30. https://doi.org/10.1016/j.geotexmem.2007.04.003.
Klenina, O., Lebedeva, L., 1983. Viscometric properties of dilute solutions of hydrolyzed polyacrylamide. Polym. Sci. U.S.S.R. 25, 2380鈥2389. https://doi.org/10.1016/0032-3950(83)90171-5.
Kolstad, D., Benson, C., Edil, T., Jo, H., 2004a. Hydraulic conductivity of dense prehydrated GCL permeated with aggressive inorganic solutions. Geosynth. Int. 11, 233鈥241. https://doi.org/10.1680/gein.2004.11.3.233.
Kolstad, D.C., Benson, C.H., Edil, T.B., 2004b. Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. J. Geotech. Geoenviron. 130, 1236鈥1249. https://doi.org/10.1061/ (ASCE)1090-0241(2004)130:12(1236).
Kurenkov, V., 1997. Acrylamide polymers. In: Cheremisinoff, N.P. (Ed.), Handbook of Engineering Polymeric Materials. Marcel Dekker, New York, pp. 61鈥72. Landis, C.R., Youngblood, J.G., Liao, W.A., Coles, B.L., 2012. Methods of Using Improved Bentonite Barrier Compositions and Related Geosynthetic Clay Liners. Halliburton Energy Services, Inc, Houston, TS (US), United States, p. 13.
Li, Q., Chen, J.N., Benson, C.H., Peng, D.P., 2021. Hydraulic conductivity of bentonite polymer composite geosynthetic clay liners permeated with bauxite liquor. Geotext. Geomembr. 49 (2), 420鈥429. https://doi.org/10.1016/j.geotexmem.2020.10.015.
Mazaheri, M., Simchi, A., Golestani-Fard, F., 2008. Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. J. Eur. Ceram. Soc. 28 (15), 2933鈥2939. https://doi.org/10.1016/j.jeurceramsoc.2008.04.030.
McWatters, S., Rowe, R.K., DiBattista, V., Sfilijog, B., Wilkins, D., Spedding, T., 2019. Exhumation and performance of an Antarctic composite barrier system after 4 years exposure. Can. Geotech. J. 57, 1130鈥1152. https://doi.org/10.1139/cgj-2018-0715.
Moore, D., Reynolds, R., 1989. X-Ray Diffraction and the Identification of Clay Minerals. Oxford University Press, New York, p. 332.
Morgan, A.B., Gilman, J.W., 2003. Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J. Appl. Polym. Sci. 87, 1329鈥1338. https://doi.org/10.1002/app.11884.
Norris, A., Aghazamani, N., Scalia, J., Shackelford, C.D., 2022a. Hydraulic performance of geosynthetic clay liners comprising anionic polymer鈥揺nhanced bentonites. J. Geotech. Geoenviron. 148 https://doi.org/10.1061/(ASCE)GT.1943-5606.0002781, 04022039.
Norris, A., Scalia, J., Shackelford, C.D., 2022b. Mechanisms controlling the hydraulic conductivity of anionic polymer-enhanced GCLs. Geosynth. Int. https://doi.org/10.1680/jgein.21.00051.
Peng, S.F., Wu, C., 1999. Light scattering study of the formation and structure of partially hydrolyzed poly(acrylamide)/calcium(II) complexes. Macromolecules 32, 585鈥589.https://doi.org/10.1021/ma9809031.
Razakamanantsoa, A.R., Barast, G., Djeran-Maigre, I., 2012. Hydraulic performance of activated calcium bentonite treated by polyionic charged polymer. Appl. Clay Sci.59, 103鈥114. https://doi.org/10.1016/j.clay.2012.01.022.
Rivas, B.L., Urbano, B.F., S鈥檃nchez, J., 2018. Water-soluble and insoluble polymers, nanoparticles, nanocomposites and hybrids with ability to remove hazardous inorganic pollutants in water. Front. Chem. 6, 1鈥13. https://doi.org/10.3389/fchem.2018.00320.
Rowe, R., 2020. Geosynthetic clay liners: perceptions and misconceptions. Geotext. Geomembr. 48, 137鈥156. https://doi.org/10.1016/j.geotexmem.2019.11.012.
Salemi, N., Abtahi, S.M., Rowshanzamir, M., Hejazi, S.M., 2018. Geosynthetic clay liners: effect of structural properties and additives on hydraulic performance and durability. Environ. Earth Sci. 77, 1鈥13. https://doi.org/10.1007/s12665-018-7364-z.
Scalia, J., 2012. Bentonite-Polymer Composites for Containment Applications. The University of Wisconsin-Madison, p. 2012.
Scalia, J., Benson, C.J., 2016. Polymer Fouling and Hydraulic Conductivity of Mixtures of Sodium Bentonite and a Bentonite-Polymer Composite. J. Geotech. Geoenviron. 143, 04016112. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001628.
Scalia, J., Benson, C.H., Bohnhoff, G.L., Edil, T.B., Shackelford, C.D., 2014. Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions. J. Geotech. Geoenviron. 140, 1鈥13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001040.
Schweins, R., Huber, K., 2001. Collapse of sodium polyacrylate chains in calcium salt solutions. Eur. Phys. J. E 5, 117鈥126. https://doi.org/10.1007/s101890170093.
Schweins, R., Lindner, P., Huber, K., 2003. Calcium induced shrinking of NaPA chains: a SANS investigation of single chain behavior. Macromolecules 36, 9564鈥9573. https://doi.org/10.1021/ma0347722.
Schweins, R., Goerigk, G., Huber, K., 2006. Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: a combined light scattering and ASAXS study. Eur.Phys. J. E, Soft Matter 21, 99鈥110. https://doi.org/10.1140/epje/i2006-10047-7.
Setz, M.C., Tian, K., Benson, C.H., Bradshaw, S.L., 2017. Effect of ammonium on the hydraulic conductivity of geosynthetic clay liners. Geotext. Geomembr. 45, 665鈥673. https://doi.org/10.1016/j.geotexmem.2017.08.008.
Shackelford, C.D., Benson, C.H., Katsumi, T., Edil, T.B., Lin, L., 2000. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr. 18, 133鈥162. https://doi.org/10.1016/S0266-1144(99)00024-2.
Shi, F.J., Feng, S.J., Zheng, Q.T., Zhang, X.L., Chen, H.X., 2022. Effect of polyanionic cellulose modification on properties and microstructure of calcium bentonite. Appl. Clay Sci. 228, 106633 https://doi.org/10.1016/J.CLAY.2022.106633.
Soppirnath, K., Aminabhavi, T., 2002. Water transport and drug release study from crosslinked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur. J. Pharm. Biopharm. 53, 87鈥98. https://doi.org/10.1016/S0939-6411(01)00205-3.
Standardization Administration of the People鈥檚 Republic of China, 2014. Code for Design of Dry Red Mud Stack in China. In: GB 50986. Beijing, China.
Standardization Administration of the People鈥檚 Republic of China, 2020. Standard for Pollution Control on the Non-hazardous Industrial Solid Waste Storage and Landfill in China. In: GB 18599. Beijing, China.
Sun, C.W., Chen, J.N., Tian, K., Peng, D.P., Liao, X., Wu, X.Y., 2019. Geochemical characteristics and toxic elements in alumina refining wastes and leachates from management facilities. Int. J. Environ. Res. Public Health 16, 1297. https://doi.org/10.3390/ijerph16071297.
Theng, B., 1982. Clay-polymer interactions: summary and perspectives. Clay Clay Miner. 30, 1鈥10.
Theng, B., 2012. Formation and Properties of Clay-Polymer Complexes, 2nd ed. Elsevier, Amsterdam, Netherlands.
Tian, K., Benson, C.H., 2018. Containing Bauxite liquor using bentonite-polymer composite geosynthetic clay liners: towards a sustainable geoenvironment. In: Proceedings of the 8th International Congress on Environmental Geotechnics.
Tian, K., Benson, C.H., 2019. Containing bauxite liquor using bentonite-polymer composite geosynthetic clay liners. In: Zhan, L., Chen, Y., Bouazza, A. (Eds.), Proceedings of the 8th International Congress on Environmental Geotechnics, Environmental Science and Engineering, 2. Springer, Singapore, pp. 672鈥678. https://doi.org/10.1007/978-981-13-2224-2_83.
Tian, K., Benson, C.H., Likos, W.J., 2016. Hydraulic conductivity of geosynthetic clay liners to low-level radioactive waste leachate. J. Geotech. Geoenviron. 142 (8), 04016037. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001495.
Tian, K., Likos, W.J., Benson, C.H., 2019. Polymer elution and hydraulic conductivity of bentonite鈥損olymer composite geosynthetic clay liners. J. Geotech. Geoenviron. 145 (10), 04019071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002097.
Wang, H., Jiang, L.S., Zhang, C.R., Wang, K., Li, Y.C., Pu, H.F., Zhao, Q., 2022. Cabentonite/polymer nanocomposite geosynthetic clay liners for effective containment of hazardous landfill leachate. J. Clean. Prod. 365, 132825 https://doi.org/10.1016/J.JCLEPRO.2022.132825.
Wireko, C., Abichou, T., 2021. Investigating factors influencing polymer elution and the mechanism controlling the chemical compatibility of GCLs containing linear polymers. Geotext. Geomembr. 49, 1004鈥1018. https://doi.org/10.1016/J.GEOTEXMEM.2021.01.009.
Wireko, C., Abichou, T., Tian, K., Zainab, B., Zhang, Z., 2022. Effect of incineration ash leachates on the hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners. Waste Manag. 139, 25鈥38. https://doi.org/10.1016/J.WASMAN.2021.12.011.
Yu, C., Liao, R.P., Cai, X.Q., Yu, X.N., 2019. Sodium polyacrylate modification method to improve the permeant performance of bentonite in chemical resistance. J. Clean. Prod. 213, 242鈥250. https://doi.org/10.1016/j.jclepro.2018.12.179.
Zainab, B., Wireko, C., Li, D., Tian, K., Abichou, T., 2021. Hydraulic conductivity of bentonite-polymer geosynthetic clay liners to coal combustion product leachates. Geotext. Geomembr. 49, 1129鈥1138. https://doi.org/10.1016/J.GEOTEXMEM.2021.03.007.
Xing Chen a, Yu Tan b, Tim Copeland c, Jiannan Chen c, Daoping Peng a, Tao Huang a
aSchool of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
bDepartment of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706, USA
cDepartment of Civil, Environmental, and Construction Engineering, University of Central Florida, FL 32816, USA
鎽樿锛氭湰鐮旂┒鑰冨療浜嗚仛鍚堢墿绫诲瀷(楂樺惛姘存ц仛鍚堢墿锛孲AP鍜岃仛闃寸瀛愮氦缁寸礌锛孭AC)锛屽埗澶囨柟娉(骞叉贩鍚堬紝骞叉拻鎴栨箍娣峰悎)锛屽垵濮嬭仛鍚堢墿鍔犺浇(1.0%锛2.5%锛5.0%锛10.0%鍜15.0%)鍜岄摑鍦熺熆娑(鍚堟垚閾濆湡鐭挎恫锛孊LS鍜屽疄闄呴摑鍦熺熆娑诧紝BLA)瀵硅仛鍚堢墿-鑶ㄦ鼎鍦熷湡宸ュ悎鎴愯啫娑﹀湡琛灚(PB GCLs)鐨勮仛鍚堢墿娲楄劚鍜屾笚閫忕郴鏁扮殑褰卞搷銆傜粨鍚堟笚閫忕郴鏁般佹绘湁鏈虹⒊鍒嗘瀽銆佺矘搴︺佹壂鎻忕數闀溿佸倕閲屽彾鍙樻崲绾㈠鍏夎氨鍜寈灏勭嚎琛嶅皠娴嬭瘯锛岀爺绌朵簡PB GCL鑱氬悎鐗╂礂鑴卞拰娓楅忕郴鏁扮殑鎺у埗鏈虹悊銆傜粨鏋滆〃鏄庯紝楂樺垵濮嬭仛鍚堢墿鍔犺浇(10.0%銆15.0%)鎴栭噰鐢ㄥ共鎾掓硶鍒跺鐨凱B GCL鐨勬笚閫忕郴鏁(< 1.0 脳 10-10 m/s)鍜岃仛鍚堢墿娲楄劚鐜(< 10.0 mg/d)杈冧綆銆傜敱浜庣嚎鎬ц仛鍚堢墿(PAC)鐨勫畬鍏ㄦ按婧舵э紝PAC澧炲己GCL鐨勮仛鍚堢墿娲楄劚鐜囬珮浜嶴AP澧炲己GCL銆傚綋BLS娓楅廝B GCLs鏃(绂诲瓙寮哄害楂樹簬BLA)锛岃仛鍚堢墿姘村嚌鑳剁敱浜庤灪鏃嬬姸鎴栨敹缂╂瀯璞¤屽叿鏈夎緝浣庣殑绮樺害锛屼粠鑰屾彁楂樹簡鑱氬悎鐗╂礂鑴遍熺巼(> 50.0 mg/d)鍜屾笚閫忕郴鏁(> 1.0 脳 10-11 m/s)銆
鍏抽敭璇嶏細鑱氬悎鐗╄啫娑﹀湡锛屽湡宸ュ悎鎴愯啫娑﹀湡琛灚锛岃仛鍚堢墿娲楄劚娓楅忕郴鏁帮紝閾濆湡鐭挎恫
1 绠浠
璧ゆ偿鏄哀鍖栭摑绮剧偧杩囩▼涓殑閾濆湡鐭挎福锛岄氬父鍫嗘斁鍌ㄥ瓨銆傝丹娉ュ彲鐢熸垚瓒呯⒈鎬ф笚婊ゆ恫(閾濆湡鐭挎恫)锛岀瀛愬己搴﹂珮锛屽惈鏈夊绉嶉噸閲戝睘(濡侫s銆丳b銆乑n) (Sun et al., 2019)銆傚洜姝わ紝閾濆湡鐭挎恫鍙兘浼氬鍔犲湴涓嬫按鍜屽湡澹ゆ薄鏌撶殑椋庨櫓銆備腑鍥界幇琛屾硶瑙(GB 50986-2014鍜孏B18599-2020)瑕佹眰鍘嬪疄绮樺湡琛灚(CCL)涓婅鍦熷伐鑶滀綔涓洪槻娓楁潗鏂欍傛澶栵紝涔熷厑璁镐娇鐢ㄦ浛浠f潗鏂(渚嬪锛屽湡宸ュ悎鎴愯啫娑﹀湡琛灚锛孏CL)锛屽彧瑕佸叾娓楅忕郴鏁扮瓑浜庢垨浣庝簬CCL銆侴CL鍥犲叾瀵规按鐨勬笚閫忕郴鏁颁綆(< 1.0 脳 10-10m /s)銆佸畨瑁呮柟渚裤佷綋绉皬銆佽妭鐪佺┖闂寸瓑浼樼偣锛岃骞挎硾搴旂敤浜庡簾寮冪墿闃叉笚璁炬柦涓 (Shackelford et al., 2000; Kolstad et al., 2004b; Bradshaw et al., 2013; Scalia et al., 2014; Tian et al., 2016; Tian and Benson, 2019; Setz et al., 2017; McWatters et al., 2019)銆
GCLs鏄敱涓灞傝杽钖勭殑鑶ㄦ鼎鍦熷す鍦ㄤ袱灞傚湡宸ュ竷涔嬮棿缁勬垚鐨 (Jo et al., 2001, 2005; Rowe, 2020)銆傝挋鑴辩煶鏄啫娑﹀湡鐨勪富瑕佺熆鐗╂垚鍒 (Shackelford et al., 2000)銆 褰撹挋鑴辩煶鍦ㄦ按涓按鍖栨椂锛屾墍浜х敓鐨勬笚閫忚啫鑳浼氬噺灏忓瓟闅欏昂瀵革紝瀵艰嚧GCL鐨勬祦閫氳矾寰勬洿灏忋佹洿鏇叉姌锛屾笚閫忕郴鏁版洿浣(Jo et al., 2001; Kolstad et al., 2004b; Scalia et al., 2014; Setz et al., 2017)銆傜劧鑰岋紝鍏锋湁楂樼瀛愬己搴﹀拰澶氫环闃崇瀛愪紭鍔跨殑渚佃殌鎬ф笚婊ゆ恫鍙互鎶戝埗娓楅忚啫鑳锛屼粠鑰屽鑷存洿楂樼殑娓楅忕郴鏁 (Shackelford et al., 2000; Jo et al., 2001; Kolstad et al., 2004b; Katsumi et al., 2007; Bradshaw and Benson, 2014; Bradshaw et al., 2015; Tian et al., 2016; Chen et al., 2018)銆傛澶栵紝閾濆湡鐭挎恫绛塸H鏋佸(< 3.0鎴> 12.0)鐨勬蹈鍑烘恫浼氭憾瑙h挋鑴辩煶锛岀敓鎴愪笉鑶ㄨ儉鐨勬鐢熺熆鐗╋紝浣垮叾鑶ㄨ儉鎬ц兘鍑忓急锛屼竴鑸細鎻愰珮GCLs鐨勬笚閫忕郴鏁(Benson et al., 2008, 2010; Bouazza and Gates, 2014)銆
鍥犳锛屼娇鐢ㄨ仛鍚堢墿澧炲己浜嗕紶缁熺殑GCL锛屼互鎻愰珮瀵硅厫铓鎬ф笚婊ゆ恫鐨勫寲瀛︾浉瀹规(Katsumi et al., 2008; Tian and Benson, 2018; Yu et al., 2019; Tian et al., 2019; Chen et al., 2019; Li et al., 2021; Chai and Prongmanee, 2020; Wireko and Abichou, 2021; Zainab et al., 2021; Norris et al., 2022a; Wireko et al., 2022; Wang et al., 2022)銆傝仛鍚堢墿-鑶ㄦ鼎鍦烥CL (PB GCL)锛屽HYPER绮樺湡銆佸瘑闆嗛姘村寲GCL鍜岃啫娑﹀湡鑱氬悎鐗╁鍚圙CL (BPC gcl)瀵硅厫铓鎬ф笚婊ゆ恫鐨勬笚閫忕郴鏁拌緝浣 (Kolstad et al., 2004a; Di Emidio et al., 2015; Scalia et al., 2014)銆備互寰鐨勭爺绌跺彂鐜帮紝褰撴笚閫忛摑鍦熺熆娑层佺剼鐑ч鐏版笚婊ゆ恫鍜岀叅鐕冪儳浜х墿娓楁护娑叉椂锛岄珮鑱氬悎鐗╁姞杞(> 5.0%)鐨凚PC GCL鐨勬笚閫忕郴鏁(~ 10-12 m/s)鏄庢樉浣庝簬甯歌GCL(~ 10-7 m/s) (Chen et al., 2019; Li et al., 2021; Zainab et al., 2021; Wireko et al., 2022)銆傛澶栵紝PB GCLs鐨勪綆娓楅忕郴鏁版槸鐢变簬涓夌淮鑱氬悎鐗╂按鍑濊兌缁撴瀯鍫靛浜嗘祦閬(鍏锋湁娴佸姩娑茬浉鐨勭矑闂村瓟闅欑┖闂) (Tian et al., 2019; Chen et al., 2019; Li et al., 2021; Wireko et al., 2022)銆
鐢变簬娓楁护娑茬牬鍧忎簡鑱氬悎鐗╂按鍑濊兌锛屽洜姝ゆ笚閫忚繃绋嬩腑鐨勮仛鍚堢墿娲楄劚鏄奖鍝峆B GCL娓楅忕郴鏁扮殑涓涓噸瑕佸洜绱(Scalia and Benson, 2016; Wireko and Abichou, 2021; Wang et al., 2022; Wireko et al., 2022)銆傝仛鍚堢墿娲楄劚鍙互鎵撳紑鏈鍒濊鑱氬悎鐗╂按鍑濊兌鍫靛鐨勫瓟闅欙紝骞舵彁渚涢澶栫殑娴佸姩璺緞锛屾彁楂楶B GCL鐨勬笚閫忕郴鏁(Tian et al., 2019; Chen et al., 2019; Zainab et al., 2021)銆傚垎鏋愪簡鑱氬悎鐗╁姞鑽锋畫鐣欍佽仛鍚堢墿娲楄劚娑茬疮绉川閲忓拰鑱氬悎鐗╂礂鑴辨恫鐧惧垎姣旓紝鎺㈣浜嗚仛鍚堢墿娲楄劚娑插娓楅忕郴鏁扮殑褰卞搷銆侰hen绛変汉(2019)鎶ュ憡绉帮紝鑱氬悎鐗╁姞杞芥畫浣(浠h〃BPC GCL涓繚鐣欑殑鑱氬悎鐗╂按鍑濊兌)鏄鐓ょ噧鐑т骇鐗╂笚婊ゆ恫娓楅忕郴鏁颁綆鐨勫師鍥犮傜劧鑰岋紝Wireko鍜孉bichou(2021)鎶ラ亾锛屽嵆浣垮湪鐩稿悓鐨勬畫浣欒仛鍚堢墿鍔犺嵎涓嬶紝鐩稿悓鐨凱B GCL鍏锋湁涓嶅悓鐨勬笚閫忕郴鏁般俉ireko绛変汉(2022)涔熻瀵熷埌锛孭B GCL鐨勬笚閫忕郴鏁颁笌GCL涓繚鐣欑殑鑱氬悎鐗╃殑璐ㄩ噺(鎴栫櫨鍒嗘瘮)鏃犲叧銆傞壌浜庝笂杩板弬鏁颁笌娓楅忔椂闂村瘑鍒囩浉鍏筹紝搴旈噸鐐瑰叧娉ㄨ仛鍚堢墿鐨勬礂鑴遍熺巼 (Wireko et al., 2022; Wang et al., 2022)銆
Tian鍜孊enson(2019)浠ュ強Li绛変汉(2021)璇勪及浜咮PC GCL瀵归摑鍦熺熆娑茬殑娓楅忕郴鏁般傜劧鑰岋紝鍦ㄨ繖浜涚爺绌朵腑浣跨敤鐨凚PC GCL鏄晢涓氫骇鍝侊紝鍒堕犲晢娌℃湁鎻愪緵鑱氬悎鐗╃被鍨嬬殑璇︾粏淇℃伅銆傚洜姝わ紝鏈爺绌堕夋嫨涓ょ鑱氬悎鐗(绾挎ц仛鍚堢墿鍜屼氦鑱旇仛鍚堢墿)浣滀负鏀规у墏锛岄氳繃涓嶅悓鐨勬柟娉曞埗澶嘝B GCL銆備负浜嗘洿濂藉湴浜嗚В褰卞搷PB GCL娓楅忕郴鏁扮殑鍥犵礌锛屽皢鑱氬悎鐗╃殑鍒濆鍔犺浇鑼冨洿(1.0% ~ 15.0%)杩涜浜嗘墿灞曘傝仛鍚堢墿娲楄劚鏄帶鍒禤B GCL娓楅忕郴鏁扮殑閲嶈鍥犵礌锛孴ian 鍜 Benson(2019)鍜孡i et al.(2021)鍧囨湭瀵规杩涜璁ㄨ銆傚洜姝わ紝鏈爺绌堕噸鐐圭爺绌朵簡閾濆湡鐭挎恫娓楅廝B - GCL鑱氬悎鐗╂礂鑴辩殑褰卞搷鍥犵礌鍙婃帶鍒惰仛鍚堢墿娲楄劚鐨勬満鐞嗐
鏈爺绌剁殑鐩殑鏄皟鏌ラ摑鍦熺熆娑层佽仛鍚堢墿绫诲瀷銆佸垵濮嬭仛鍚堢墿鍔犺浇鍜屽埗澶囨柟娉曞PB GCL鐨勬笚閫忕郴鏁板拰鑱氬悎鐗╂礂鑴辩殑褰卞搷銆傛湰鐮旂┒閲囩敤婀挎贩鍚堟硶銆佸共娣峰悎娉曞拰骞叉磼娉曞垎鍒敤楂樺惛姘存ц仛鍚堢墿(SAP锛屼氦鑱旇仛鍚堢墿)鎴栬仛闃寸瀛愮氦缁寸礌(PAC锛岀嚎鐘惰仛鍚堢墿)鍒跺PB GCL銆傚垵濮嬭仛鍚堢墿鍔犺浇鍒嗗埆涓1.0%銆2.5%銆5.0%銆10.0%鍜15.0%銆備互閾濆湡鐭挎恫(BLS鍜孊LA)涓烘笚閫忔恫锛岃繘琛屼簡娓楅忕郴鏁版祴璇曞拰鎬绘湁鏈虹⒊(TOC)鍒嗘瀽銆傛澶栵紝缁撳悎绮樺害銆佹壂鎻忕數闀(SEM)銆佸倕閲屽彾鍙樻崲绾㈠鍏夎氨(FTIR)鍜寈灏勭嚎琛嶅皠(XRD)娴嬭瘯瀵筆B GCL鍜岃仛鍚堢墿鐨勫井瑙傜粨鏋勮繘琛屼簡鍒嗘瀽锛屾彮绀轰簡鑱氬悎鐗╂礂鑴卞拰娓楅忕郴鏁扮殑鎺у埗鏈虹悊銆
2 鏉愭枡鍜屾柟娉
2.1 鏉愭枡
鏈爺绌朵娇鐢ㄤ粠鍟嗕笟GCL (GA, 4500 g/m2)涓彁鍙栫殑浜哄伐閽犲寲鑶ㄦ鼎鍦熷悎鎴怭B GCLs銆傝啫娑﹀湡鐨勯槼绂诲瓙浜ゆ崲瀹归噺涓51 cmol+/kg锛岀粨鍚堢殑闃崇瀛愮敱45%鐨勯挔(Na+)銆44%鐨勯挋(Ca2+)銆7%鐨勯晛(Mg2+)鍜3%鐨勯捑(K+)缁勬垚(ASTM, 2010)銆傝啫娑﹀湡鐨勭熆鐗╃粍鎴愪负:钂欒劚鐭70%銆佺煶鑻10%銆佹柟瑙g煶12%銆佹枩闀跨煶4%銆侀捑闀跨煶3%銆佹哺鐭1%銆傛湁鍏虫祴瀹氭柟娉曠殑璇︾粏淇℃伅瑙佽ˉ鍏呮潗鏂(鍙湪绾胯幏鍙) (Moore and Reynolds, 1989; Scalia et al., 2014; Mazaheri et al., 2008)銆
閫夋嫨楂樺惛姘存ц仛鍚堢墿(SAP)鍜岃仛闃寸瀛愮氦缁寸礌(PAC)浣滀负鏀规у墏銆係AP鐨勪富瑕佹垚鍒嗘槸浜よ仈鑱氫笝鐑吀閽犮備娇鐢⊿AP鐨凣CL寰楀埌浜嗗寮猴紝鍏锋湁鏇村ソ鐨勬按鍔涙ц兘(Scalia and Benson, 2016; Salemi et al., 2018; Wireko et al., 2022)銆侾AC鏄竴绉嶆按婧舵х嚎鐘惰仛鍚堢墿锛屽凡琚敤浜庢敼鍠凣CL涓庤厫铓鎬ф笚婊ゆ恫鐨勫寲瀛︾浉瀹规(Landis et al., 2012; Du et al., 2021; Shi et al., 2022)銆傛澶栵紝瀹冧滑鍦ㄩ摑鍦熺熆娑蹭腑鐨勫簲鐢ㄧ爺绌惰緝灏戙傝仛鍚堢墿鐨勮缁嗕俊鎭拰鎶鏈鏍艰琛ュ厖鏉愭枡鍜岃〃S1銆
2.2 閾濈熆鍦熸恫
鏈爺绌堕噰鐢ㄤ簡涓ょ閾濆湡鐭挎恫:(1)鍚堟垚閾濆湡鐭挎恫(BLS)鏄熀浜庡浗鍐呮哀鍖栭摑鍘傜殑淇℃伅锛屼唬琛ㄤ簡瀹為檯閾濆湡鐭挎恫鐨勫吀鍨嬪拰杈冨樊鐨勬薄鏌撶壒寰(Sun et al., 2019; Li et al., 2021); (2)浠庢煇璧ゆ偿鍫嗗満(涓浗锛岄噸搴)钃勬按鎺掓按绠′腑鏀堕泦瀹為檯閾濆湡鐭挎恫(BLA)銆傜敱琛1鍙煡锛屼袱绉嶉摑鍦熺熆娑插潎涓鸿秴纰辨(pH > 12.0)锛岃孊LS鐨勭瀛愬己搴﹁繙楂樹簬BLA (622.5 mM > 156.9mM)銆傞摑鍦熺熆娑茬殑鍒跺鏂规硶瑙佽ˉ鍏呰祫鏂欍
琛1 閾濆湡鐭挎恫鐨勬讳綋鍖栧鍙傛暟鍙婁富瑕佸厓绱犲拰闃寸瀛愭祿搴
2.3 鑱氬悎鐗╄啫娑﹀湡GCLs鍚堟垚
PB GCL鐨勫埗澶囧伐鑹哄鍥維1鎵绀猴紝鍖呮嫭婀挎贩鍚堟硶(WM)銆佸共娣峰悎娉(DM)鍜屽共娲掓硶(DS)(Kolstad et al., 2004a; Razakamanantsoa et al., 2012; Scalia, 2012; Di Emidio et al., 2015; Scalia and Benson, 2016; Du et al., 2021; Norris et al., 2022a; Shi et al., 2022)銆傝繖浜涙柟娉曠殑璇︾粏杩囩▼鍦ㄨˉ鍏呮潗鏂欎腑鎻愪緵銆傛敼鎬у墏鍖呮嫭浜よ仈SAP (S)鍜岀嚎鎬AC (P)銆傛牴鎹甈B GCL鏍峰搧涓啫娑﹀湡鐨勮川閲忥紝鍒濆鑱氬悎鐗╁姞杞借缃负1.0%銆2.5%銆5.0%銆10.0%鍜15.0%锛屼唬琛ㄦ湭澧炲己鐨勮啫娑﹀湡涓坊鍔犺仛鍚堢墿鐨勮川閲忕櫨鍒嗘瘮銆傚埗澶囦簡20绉峆B GCL骞跺鍏惰繘琛屼簡鐮旂┒銆備緥濡傦紝SWM5瑙勫畾鍦ㄥ垵濮嬭仛鍚堢墿鍔犺浇涓5.0%鐨勬儏鍐典笅锛屼娇鐢ㄦ箍娣峰悎鏂规硶閫氳繃SAP澧炲己PB GCL銆
2.4 寰昂搴﹀垎鏋
鍦ㄨ繘琛屾按鍔涙ц兘璇曢獙鍓嶏紝缁撳悎FTIR銆乆RD鍜孲EM瀵筆B - GCL璇曟牱杩涜寰灏哄害鍒嗘瀽(绮樺湡-鑱氬悎鐗╃浉浜掍綔鐢)銆傞噰鐢↘Br棰楃矑鎶鏈(1:20)锛屽湪2 cm-1鍒嗚鲸鐜囷紝瀹ゆ俯鐨勪紶杈撴ā寮忎笅锛屽湪Thermo Fisher Niolet iN10(鍏夎氨鑼冨洿:400-4000 cm-1)涓婅繘琛屼簡FTIR娴嬭瘯銆侹Br鍦200鈩冧笅骞茬嚗24 h锛岀敤鐞冪(鏈哄拰鑶ㄦ鼎鍦熺矇鍧囪川澶勭悊銆傚湪杩涜XRD娴嬭瘯鍓嶏紝灏嗙儤骞插悗鐨勮啫娑﹀湡鐢ㄧ帥鐟欑爺閽靛湪26鈩冦58%鐨勭浉瀵规箍搴︿笅鐮旂(锛岀洿鑷冲潎璐ㄨ啫娑﹀湡绮夌矑搴︿负45 渭m銆俋RD娴嬭瘯閲囩敤Rigaku SmartLab SE琛嶅皠浠(Cu-K伪杈愬皠锛屛 = 0.1541 nm, D/teX-Ultra妫娴嬪櫒)銆傛祴閲忚寖鍥翠负5 ~ 70鈼2胃锛屾壂鎻忛熺巼涓5鈼(2胃) min-1銆 鍦ㄨ繘琛屾壂鎻忕數闀(SEM)娴嬭瘯涔嬪墠锛屽皢鏍峰搧鍦20 kPa鐨勭湡绌烘潯浠朵笅鐢ㄦ恫姘(-196鈼)鍐峰喕骞茬嚗(vacuum Freeze dry, LGJ-10, Beijing, China)锛屼互淇濇寔鏍峰搧鍦ㄦ按鍖栫姸鎬佷笅鐨勫師濮嬪井瑙傜粨鏋(Tian et al., 2016; Tian et al., 2019; Li et al., 2021)銆 鐒跺悗锛岀敤鎵嬫湳鍒鍒囧壊鍐诲共鏍囨湰锛屽苟閫氳繃婧呭皠闀閲(Denton Vacuum Desk II, Moorestown, NJ, USA)浠ヨ繘琛屾壂鎻忕數闀滐紙SEM锛夋祴璇曘傚埄鐢╖EISS Sigma 300 (3 kev鐢靛瓙鏉燂紝浼犵粺浜屾鐢靛瓙妫娴嬪櫒)鍜岃兘閲忚壊鏁灏勭嚎鑳借氨浠(EDS锛屽瀷鍙2227a - asp - sn, Thermo Scientific NORAN, Waltham, Massachusetts)杩涜SEM娴嬭瘯锛屽垎鏋怭B GCLs鐨勫舰鎬佸拰鑱氬悎鐗╁垎甯冦
姝ゅ锛岃繕鑾峰緱浜嗘笚閫忕郴鏁版祴璇曞悗鐨凱B GCLs鍒囧壊琛ㄩ潰鐨凷EM鍥惧儚锛屼互瑙傚療閾濆湡鐭挎恫娓楅忓悗PB GCLs鐨勫井瑙傜粨鏋勩傝繕瀵硅仛鍚堢墿杩涜浜哠EM娴嬭瘯锛屼互璇勪及閾濆湡鐭挎恫瀵规瀯璞$殑褰卞搷銆傚皢0.05 g鑱氬悎鐗╁湪10ml閾濆湡鐭挎恫涓按鍖24h鍒跺鑱氬悎鐗╂爣鏈
2.5 姘村姏鎬ц兘娴嬭瘯
浠LS鍜孊LA涓烘祴璇曟恫锛屽GA鍜孭B鍨婫CL杩涜浜嗘按鍔涙ц兘璇曢獙(鑶ㄨ儉鎸囨暟璇曢獙鍜屾笚閫忕郴鏁拌瘯楠)銆傛澶栵紝浣跨敤鍘荤瀛愭按杩涜瀵圭収璇曢獙銆傝啫鑳鎸囨暟璇曢獙鍙傜収ASTM D5890 (ASTM, 2011)銆
閲囩敤鏌旀у娓楅忎华瀵瑰寮鸿啫娑﹀湡棰楃矑(90%閫氳繃缇庡浗4鍙风瓫锛4.75 mm)杩涜浜嗘笚閫忕郴鏁版祴璇曘傛牴鎹甋calia绛変汉(2014)鐨勮娉曪紝鍏稿瀷鐨勫晢鐢℅CL鐨勫伐绋嬬粨鏋勬槸浣跨敤澧炲己鑶ㄦ鼎鍦熼噸鐜扮殑銆傚湪娓楅忎华涓紝鍧囧寑鐨勫寮鸿啫娑﹀湡灞(4500 g/m2锛岀洿寰100 mm)澶瑰湪缂栫粐(110 g/m2)鍜岄潪缁囬(220 g/m2)鍦熷伐甯冧箣闂 (Li et al., 2021; Norris et al., 2022a)銆傛笚閫忕郴鏁版祴璇曢伒寰狝STM D6766 (ASTM, 2012)鍜孉STM D5084 (ASTM, 2016)涓檷姘村ご-鎭掑畾灏炬按鏂规硶銆
鐒跺悗锛屼娇鐢⊿himadzu TOC- LCPH鍒嗘瀽浠(Shimadzu, Kyoto, Japan)鎸夌収ASTM D4839 (ASTM, 2017)杩涜TOC鍒嗘瀽銆傛牴鎹嚭姘碩OC鏁版嵁璁$畻鑱氬悎鐗╂礂鑴遍熺巼(Rpe锛 %/d)锛岄噺鍖栨笚閫忚繃绋嬩腑鑱氬悎鐗╃殑娲楄劚(Wang et al., 2022):
鍏朵腑TOC1鍜孴OC2鍒嗗埆涓哄嚭姘村拰閾濆湡鐭挎恫涓殑TOC娴撳害(mg/L);V涓烘祦鍑虹墿鐨勪綋绉(L);C涓鸿仛鍚堢墿閲嶅鍗曞厓涓⒊鍏冪礌鐨勮川閲忓垎鏁(%);T涓烘笚閫忔椂闂(d);m涓篜B GCL璐ㄩ噺(mg);B涓哄垵濮嬭仛鍚堢墿杞借嵎(%)銆傝仛鍚堢墿娲楄劚閫熺巼(%/d) 脳 mb =鑱氬悎鐗╂礂鑴遍熺巼(mg/d)銆傛按鍔涙ц兘璇曢獙鐨勬洿澶氱粏鑺傚湪琛ュ厖鏉愭枡涓璁恒
2.6 榛忓害娴嬭瘯
绾挎ц仛鍚堢墿鏄按婧舵х殑锛岀敱浜庝翰姘存у姛鑳藉洟鐨勫瓨鍦紝鍙互褰㈡垚绮樻ц仛鍚堢墿姘村嚌鑳 (Kadajji and Betageri, 2011; Rivas et al., 2018)銆傜劧鑰岋紝浜よ仈鑱氬悎鐗╀竴鑸笉鑳戒綔涓虹嚎鎬ц仛鍚堢墿婧朵簬姘达紝浣嗕篃鍙互閫氳繃鍚告按褰㈡垚绮樻ц仛鍚堢墿姘村嚌鑳躲傛澶栵紝鑱氬悎鐗╃殑绮樺害鍙互閫氳繃鎺у埗鑱氬悎鐗╃殑杩佺Щ鐜囨潵褰卞搷娓楅忚繃绋嬩腑鑱氬悎鐗╃殑娲楄劚(Schweins and Huber, 2001; Schweins et al., 2006; Wireko and Abichou, 2021)銆
闅忓悗锛屽鑱氬悎鐗╁寮鸿啫娑﹀湡涓庨摑鍦熺熆娑叉贩鍚堝埗澶囩殑娴嗘枡杩涜绮樺害娴嬭瘯锛屾帰璁ㄩ摑鍦熺熆娑插娴嗘枡绮樺害鐨勫奖鍝嶃傝仛鍚堢墿澧炲己鑶ㄦ鼎鍦熸祮鏂欑殑绮樺害鐢盉rookfield鏁板瓧绮樺害璁(DV2T, AMETEK Brookfield, Middleborough, Massachusetts)娴嬪畾銆傜矘搴︽祴璇曠殑璇︾粏淇℃伅鍦ㄨˉ鍏呮潗鏂欎腑鎻愪緵銆
3 缁撴灉鍜岃璁
3.1 鑱氬悎鐗╁寮哄悗GCL鐨勫井灏哄害鍒嗘瀽
XRD娴嬭瘯缁撴灉(鍥1a)琛ㄦ槑锛孭B GCLs 钂欒劚鐭(d001)鐨勭涓娆$壒寰佸弽灏(PWM10: 1468;SWM10: 1611)灏忎簬GA(2076)銆傛箍娉曟贩鍚堣繃绋嬩腑鏈烘鎼呮媽瀵艰嚧钂欒劚鍦熷墺绂伙紝寮哄害闄嶄綆 (Morgan and Gilman, 2003; Yu et al., 2019; Shi et al., 2022)銆 d001鐨勯檷浣庤〃鏄庤繖浜涢槾绂诲瓙鑱氬悎鐗╁緢闅惧祵鍏ヨ挋鑴卞湡澶瑰眰涓 (Shi et al., 2022; Theng, 1982; Di Emidio et al., 2015; Kolstad et al., 2004a)銆
GCL鏍峰搧鐨凢TIR鍏夎氨濡傚浘1b鎵绀恒侾B GCL鐨勬尟鍔ㄦā寮忎笌GA鐩镐技锛屽寘鎷細鑷敱姘寸殑OH浼哥缉鎸姩甯(3448 ~ 3454 cm-1)銆佽嚜鐢辨按鐨凮H寮洸鎸姩甯(1640 cm-1)鍜孲i-O-Si鍙嶅绉颁几缂╂尟鍔ㄥ甫(1040 ~ 1042 cm-1)銆備絾鍦ㄥ嚑绉嶆尟鍨嬬殑棰戝甫鍐呬粛瀛樺湪鍋忓樊銆傚鍥1b鍜岃〃S2鎵绀猴紝PWM10鍏锋湁PAC (-CH2鍙嶅绉颁几缂╂尟鍔ㄥ甫2923 cm-1鍜孋-O-H寮洸鎸姩甯1333 cm-1)涓ょ鏂扮殑鎸姩妯″紡銆傚浜嶴WM10鏍峰搧锛屽湪鍥1b鍜岃〃S2涓繕瑙傚療鍒癝AP鐨勪袱涓柊鐨勫惛鏀跺甫(C - C閿:1642 cm-1鍜孋 - O瀵圭О浼哥缉鎸姩甯:1401 cm-1)銆侳TIR鍏夎氨琛ㄦ槑锛孲AP鍜孭AC鍒嗗瓙涓庤啫娑﹀湡鎴愬姛鐩镐簰浣滅敤銆傛澶栵紝闃寸瀛愯仛鍚堢墿涓庤啫娑﹀湡琛ㄩ潰涔嬮棿鐨勭數鑽锋帓鏂ヤ綔鐢ㄥ鑷撮槼绂诲瓙妗ユ帴鏄叧閿殑鐩镐簰浣滅敤(Theng, 1982; Shi et al., 2022; Yu et al., 2019; Norris et al., 2022a; Wang et al., 2022)銆
鍥1 (a)闅忔満鍙栧悜绮夋湯(GA銆丳WM10銆丼WM10)鐨刋RD璋; (b) GA銆丼AP銆丼WM10銆丳AC鍜孭WM10鐨凢TIR琛ㄥ緛銆侴A:甯歌GCL;PAC锛岃仛闃寸瀛愮氦缁寸礌;SAP锛岄珮鍚告按鎬ц仛鍚堢墿;PWM10: PAC澧炲己PB GCL锛屽垵濮嬭仛鍚堢墿璐熻浇10%锛屾箍娣峰悎;SWM10: SAP澧炲己GCL锛屽垵濮嬭仛鍚堢墿璐熻浇涓10锛屾箍娣峰悎銆
GA鍜孭B GCL鍦ㄦ笚閫忕郴鏁拌瘯楠屽墠鐨凷EM鍥惧儚濡傚浘S3a鎵绀恒侴A棰楃矑琛ㄧ幇鍑轰笉鍧囧寑鐨勮仛闆嗙粨鏋勩傛箍娣峰悎娉曞埗澶囩殑PWM10璇曟牱褰㈡垚浜嗗叿鏈夌墖灞傜粨鏋勭殑姘村嚌鑳剁綉缁滐紝鍦ㄦ箍娣峰悎娉曞埗澶囪繃绋嬩腑锛岀敱浜庢満姊版悈鎷屼綔鐢紝鍦ㄧ綉缁滅粨鏋勪笂绮樼粨浜嗗井灏忛绮(Shi et al., 2022)銆係WM10鐨凷EM鍥惧儚琛ㄦ槑锛孲AP姘村嚌鑳跺寘瑁逛簡鑱氬悎鐗╄啫娑﹀湡棰楃矑鐨勫眰鐘剁粨鏋勩傛澶栵紝EDS缁撴灉琛ㄦ槑锛岃仛鍚堢墿鐨勪富瑕佺粍鎴愬厓绱燙鍏冪礌鍦≒B GCL涓殑鍘熷瓙鐧惧垎鐜囬珮杈8.54%(鍥維3b)銆係EM鍥(鍥維3c)涔熸樉绀轰簡C鍏冪礌鐨勫垎甯冿紝琛ㄦ槑鑶ㄦ鼎鍦熷凡缁忚鑱氬悎鐗╁寮 (Wang et al., 2022)銆
3.2 PB GCL瀵归摑鍦熺熆娑茬殑娓楅忕郴鏁
GCL瀵归摑鍦熺熆娑插拰DI姘寸殑娓楅忕郴鏁板拰鑶ㄨ儉鎸囨暟鎬荤粨瑙佽〃2銆傛笚閫忕郴鏁拌瘯楠屾寔缁椂闂撮暱杈180澶╋紝鎵鏈塆CL鐨勬笚閫忕郴鏁颁繚鎸佺ǔ瀹氥傜粨鏋滆〃鏄庯紝鐢变簬閾濆湡鐭挎恫鎶戝埗鑶ㄦ鼎鍦熺殑娓楅忚啫鑳锛孏A-BLS (GA娓楅廈LS)鍜孏A- BLA鐨勬笚閫忕郴鏁(> 1.0 脳 10-8 m/s)鏄庢樉楂樹簬GA- DI (2.7 脳 10-11 m/s)銆傜劧鑰岋紝澶у鏁癙B GCL瀵归摑鍦熺熆娑茬殑娓楅忕郴鏁颁綆浜嶨A (< 1.0 脳 10-10 m/s)锛岃〃鏄庤仛鍚堢墿澧炲己鎴愬姛鍦版敼鍠勪簡GA瀵归摑鍦熺熆娑茬殑鍖栧鐩稿鎬с
琛2 GCL鐨勬笚閫忕郴鏁板拰鑶ㄨ儉鎸囨暟缁艰堪(GA:甯歌GCL S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮); GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞%鍒伴摑鍦熺熆娑(BLA:瀹為檯閾濆湡鐭挎恫;BLS:鍚堟垚閾濆湡鐭挎恫)鍜孌I鍘荤瀛愭按銆
娉: PVF =棰勬祦閲;N/A =涓嶉傜敤;-=鏈祴閲忋
a 娓楅忔祴璇曚粛鍦ㄨ繘琛屼腑锛屼互鏀堕泦鏇村鐨勫嚭姘磋繘琛屽寲瀛﹀钩琛¤瘎浼帮紝骞剁‘瀹氶暱鏈熸按鍔涙ц兘銆
b 杩欎簺鍙傛暟鐨勮绠楀叕寮忓彲鍦ㄨˉ鍏呰祫鏂欎腑鎵惧埌銆
GCLs鍦ㄦ笚閫忚繃绋嬩腑鐨勬笚閫忕郴鏁板彉鍖栧鍥維4鎵绀恒傜敱浜庤仛鍚堢墿娲楄劚瀵艰嚧鍑烘按绠″牭濉烇紝SDS5銆丼WM10鍜孭WM15瀵笲LS鐨勬笚閫忕郴鏁版樉钁楅檷浣 (Wireko and Abichou, 2021; Zainab et al., 2021)銆傚洜姝わ紝浣跨敤娓楅忔恫瀹氭湡鍐叉礂鍑烘按绠°侾WM5鍜孭WM10鐨勬笚閫忕郴鏁板湪娓楅忓垵鏈熸湁鎵涓嬮檷锛屼絾鐢变簬鑱氬悎鐗╂按鍑濊兌鍫靛浜嗘祦閬擄紝鏈缁堝湪涓嶆竻娲楃閬撶殑鎯呭喌涓嬩繚鎸佺ǔ瀹氥傚煎緱娉ㄦ剰鐨勬槸锛孭DM10鐨勬笚閫忕郴鏁扮殑鎬ュ墽澧炲姞褰掑洜浜庤仛鍚堢墿娲楄劚寮曡捣鐨勪紭鍏堟祦鍔 (Zainab et al., 2021; Norris et al., 2022a)銆傚鍥維5鎵绀猴紝PDM10鏌撹壊鍚庣殑鍨傜洿瑙嗗浘(宸︿晶)鏄剧ず鍑虹传鑹茬殑浼樺厛娴佸尯銆備粠1鍖轰晶瑙嗗浘(鍙充晶)鍙互鐪嬪嚭锛屼笌2鍖虹浉姣旓紝鍓╀笅鐨勬按鍑濊兌閲忔洿灏戯紝瀵艰嚧浼樺厛娴佸姩銆
3.3 PB GCL瀵归摑鍦熺熆娑茬殑鑱氬悎鐗╂礂鑴
鑱氬悎鐗╂礂鑴辩殑绱Н璐ㄩ噺銆佽仛鍚堢墿娲楄劚鐨勭櫨鍒嗘瘮鍜屽墿浣欑殑鑱氬悎鐗╁姞杞(琛2)璇佸疄浜嗚仛鍚堢墿鍦ㄦ笚閫忚繃绋嬩腑浠嶱B GCL涓娲楄劚銆傜粡杩囨笚閫忕郴鏁版祴璇曪紝SDS1-BLS鍜孭DS1-BLS鐨勮仛鍚堢墿娈嬬暀閲忓緢灏(娈嬩綑鑱氬悎鐗╄浇鑽<0.5%)锛岃岄儴鍒哖B GCL (SWM5-BLA銆丼WM15-BLS銆丼WM10-BLS鍜孭WM15-BLS)鍑犱箮娌℃湁鑱氬悎鐗╂礂鑴(鑱氬悎鐗╂礂鑴辩櫨鍒嗘瘮<5.0%)銆
鍥2a鏄剧ず浜咷CL(PB GCL鍜孏A)瀵笲LS鐨勬笚閫忕郴鏁帮紝杩欐槸娈嬩綑鑱氬悎鐗╁姞杞界殑鍑芥暟銆傚湪娓楅忚繃绋嬩腑锛岀敱浜庤仛鍚堢墿鐨勬礂鑴憋紝娈嬩綑鑱氬悎鐗╁姞鑽峰皬浜庡垵濮嬭仛鍚堢墿鍔犺嵎锛屽奖鍝嶄簡PB - GCL鐨勬笚閫忕郴鏁般侾B GCL鐨勬笚閫忕郴鏁伴氬父涓庢畫浣欒仛鍚堢墿鍔犺浇鍛堣礋鐩稿叧(鍥2a)銆傚鏋滃彂鐢熶弗閲嶇殑鑱氬悎鐗╂礂鑴憋紝GCL灏嗗叿鏈変綆娈嬬暀鑱氬悎鐗╄礋杞藉拰楂樻笚閫忕郴鏁般備緥濡傦紝鍒濆鑱氬悎鐗╁姞杞借緝浣庣殑SDS1-BLS鐨勮仛鍚堢墿娲楄劚鐜囨渶楂(鑱氬悎鐗╂礂鑴辩巼涓98.5%)锛屽叾瀵笲LS鐨勬按鍔涘鐜囪緝楂(9.2 脳 10-7 m/s)銆傜劧鑰岋紝鍏堝墠鐨勭爺绌跺彂鐜帮紝PB GCL鐨勬笚閫忕郴鏁颁笌娓楅忓悗淇濈暀鐨勮仛鍚堢墿閲忔棤鍏(Wireko and Abichou, 2021; Wireko et al., 2022)銆 渚嬪锛孭DM5-BLS鍜孭DS5-BLS鍏锋湁鐩镐技鐨勬畫浣欒仛鍚堢墿鍔犺浇(~ 4.0%)锛岃屾笚閫忕郴鏁扮浉宸3涓暟閲忕骇(鍥2a)锛屽洜涓鸿仛鍚堢墿娲楄劚閫熺巼鏄奖鍝峆B-GCLs娓楅忕郴鏁扮殑鍏抽敭鍥犵礌銆
SWM5銆丼DW10鍜孭WM10鐨勮仛鍚堢墿娲楄劚鐜囬殢娓楅忕郴鏁扮殑鍙樺寲瓒嬪娍濡傚浘2b鎵绀恒傚湪娓楅忚繃绋嬩腑锛屾笚閫忕郴鏁板拰鑱氬悎鐗╂礂鑴辩巼閫愭笎闄嶄綆(鐢卞彸鍚戝乏)銆傚湪娓楅忓紑濮嬫椂(鍥2b鍙充晶)锛岃繖浜汸B GCL鍏锋湁杈冮珮鐨勬笚閫忕郴鏁(> 1.0 脳 10-10m /s)鍜岃仛鍚堢墿娲楄劚閫熺巼(> 1.0 脳 104 mg/d)锛岃屾渶缁堢殑娓楅忕郴鏁(1.0 脳 <10-10m /s)鍜岃仛鍚堢墿娲楄劚閫熺巼(< 10.0 mg/d)闄嶄綆銆傚洜姝わ紝娓楅忕郴鏁颁笌鑱氬悎鐗╂礂鑴遍熺巼鍛堟鐩稿叧銆傝仛鍚堢墿娲楄劚閫熺巼瓒婇珮锛屾礂鑴辫矾寰勫拰娴侀亾瓒婂锛孭B GCL鐨勬笚閫忕郴鏁拌秺楂樸傚悓鏃讹紝鐢变簬鏇撮珮鐨勬笚閫忕郴鏁帮紝PB GCL涓洿蹇殑娴侀熶細鍐插埛鍑烘洿澶氱殑鑱氬悎鐗╋紝浠庤屽鑷存洿楂樼殑鑱氬悎鐗╂礂鑴遍熺巼 (Norris et al., 2022b)銆
鍥2 (a) GCL瀵笲LS鐨勬笚閫忕郴鏁颁笌娈嬩綑鑱氬悎鐗╁姞鑽风殑鍏崇郴;(b) 娓楅忚繃绋嬩腑娓楅忕郴鏁颁笌鑱氬悎鐗╂礂鑴遍熺巼鐨勫叧绯汇(S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)銆
3.4 鑱氬悎鐗╁姞杞藉娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辩殑褰卞搷
GCL瀵笲LS鐨勬笚閫忕郴鏁颁笌鍒濆鑱氬悎鐗╁姞杞界殑鍏崇郴濡傚浘3a鎵绀恒備綆鍒濆鑱氬悎鐗╁姞杞(PDS1, SDS1, PWM2.5, SDM2.5, PDM5鍜孭WM5)鐨凣A鍜孭B GCLs瀵笲LS涓嶈兘缁存寔杈冧綆鐨勬笚閫忕郴鏁(< 1.0 脳 10-10 m/s)銆傜浉鍙嶏紝鏃犺鍒跺鏂规硶濡備綍锛屽垵濮嬭仛鍚堢墿鍔犺浇杈冮珮(10.0%鍜15.0%)鐨凱B GCL鐨勬笚閫忕郴鏁伴兘杈冧綆(PDW10闄ゅ)銆傝冭檻鍒拌仛鍚堢墿姘村嚌鑳朵細鍫靛鏇村鐨勫瓟闅欑┖闂达紝褰撹仛鍚堢墿鍔犺浇瓒冲澶ф椂锛孭B GCL鐨勬祦閬撴洿绐勩佹洿鏇叉姌锛屾笚閫忕郴鏁版洿浣 (Tian et al., 2016; Li et al., 2021; Zainab et al., 2021)銆傜敱姝ゅ彲瑙侊紝澧炲姞PB GCL鐨勫垵濮嬭仛鍚堢墿鍔犺浇鍙湁鏁堟敼鍠勫叾涓庨摑鍦熺熆娑茬殑鍖栧鐩稿鎬с
鎺у埗PB GCL娓楅忕郴鏁扮殑鏈哄埗鍙栧喅浜庡垵濮嬭仛鍚堢墿鍔犺浇(Zainab et al., 2021)銆侾B GCL鍜孏A鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟鐨勫叧绯诲鍥3b鎵绀恒侴A娴嬭瘯缁撴灉(鍥3b涓殑鏄熷彿)琛ㄦ槑锛岃啫娑﹀湡鐨勬笚閫忕郴鏁颁笌鑶ㄦ鼎鍦熺殑鑶ㄨ儉鎸囨暟鍛堟樉钁楄礋鐩稿叧锛岃啫娑﹀湡鐨勫厖鍒嗚啫鑳鏄淮鎸佷綆娓楅忕郴鏁扮殑蹇呰鏉′欢銆備笌GA鐩告瘮锛屼綆鍒濆鑱氬悎鐗╁姞杞(鈮5.0%)鐨凱B GCL鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟(鍥3b涓湭濉厖鐨勮彵褰)娌℃湁鏄捐憲鐨勮礋鐩稿叧銆係WM5-BLS鐨勬笚閫忕郴鏁(1.9 脳 10-11 m/s)涓嶴WM5-BLA鐨勬笚閫忕郴鏁(8.6 脳 10-12 m/s)鐩镐技锛屼絾鑶ㄨ儉鎸囨暟宸紓杈冨ぇ(17.0 < 29.0 mL/ 2g)銆傜粨鏋滆〃鏄庯紝鑶ㄦ鼎鍦熺殑鑶ㄨ儉鍜岃仛鍚堢墿鐨勫牭濉炴満鍒跺浣庡垵濮嬭仛鍚堢墿鍔犺浇鐨凱B GCL鐨勬笚閫忕郴鏁版湁鍏卞悓鐨勫奖鍝(Tian et al., 2019; Zainab et al., 2021)銆傚鍥3b鐨勫~鍏呰彵褰㈡墍绀猴紝楂樺垵濮嬭仛鍚堢墿鍔犺嵎(鈮10.0%)鐨凱B GCL鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟鏃犲叧锛屼粎鍙楄仛鍚堢墿鍫靛鏈虹悊鎺у埗 (Zainab et al., 2021), 渚嬪锛屽嵆浣胯啫鑳鎸囨暟杈冧綆(15.0 mL/2 g)锛孲WM10-BLS浠嶅叿鏈変綆娓楅忕郴鏁(1.7 脳 10- 12 m/s)銆
鍥3 (a) PB GCL鐨勬笚閫忕郴鏁(S:SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)鍜孏A(甯歌GCL)涓嶣LS(鍚堟垚閾濆湡鐭挎恫)鐨勫叧绯伙紝杩欐槸鍒濆鑱氬悎鐗╁姞杞界殑鍑芥暟;(b) PB GCL鍜孏A瀵笵I姘村拰閾濆湡鐭挎恫鐨勬笚閫忕郴鏁颁笌鑶ㄨ儉鎸囨暟鐨勫叧绯汇
鏁翠釜娓楅忚繃绋嬩腑PB GCL鐨勬笚閫忕郴鏁颁笌鑱氬悎鐗╂礂鑴遍熺巼鐨勫叧绯诲鍥4鎵绀恒傚垵濮嬭仛鍚堢墿鍔犺浇杈冮珮鐨凱BGCL瀵笲LS鐨勫寲瀛︾浉瀹规ц緝濂姐係DS1-BLS鑱氬悎鐗╂礂鑴辩巼鏈楂(26192.7% /d, 91674.4 mg/d)锛屾笚閫忕郴鏁版渶楂(9.2 脳 10-7 m/s)锛 SWM15-BLS鑱氬悎鐗╂礂鑴辩巼鏈浣(0.016%/d)锛屾笚閫忕郴鏁版渶浣(6.6 脳 10-13 m/s)銆傚鍥4鎵绀猴紝鑱氬悎鐗╂礂鑴遍熺巼涓嶴AP鎴朠AC澧炲己鐨凱B GCL鐨勬笚閫忕郴鏁板憟姝g浉鍏(瑙3.3)銆備緥濡傦紝PWM2.5璇曟牱鍏锋湁杈冮珮鐨勬笚閫忕郴鏁(8.2 脳 10-7 m/s)锛屽洜涓鸿仛鍚堢墿姘村嚌鑳剁敱浜庤緝浣庣殑鍒濆鑱氬悎鐗╁姞杞借屼笉鑳藉牭濉炴祦閬撱傚悓鏃讹紝PWM2.5-BLS鐨勮仛鍚堢墿娲楄劚鐜囪緝楂(83,261.6 mg/d)锛屽鑷撮珮娓楅忕郴鏁扮殑鍐叉礂鏁堟灉鏇翠负鏄捐憲銆傜劧鑰岋紝鐢变簬瓒冲鐨勮仛鍚堢墿鍔犺浇锛孭WM15-BLS鐨勬笚閫忕郴鏁(1.5 脳 10-12 m/s)鍜岃仛鍚堢墿娲楄劚鐜(4.3 mg/d)杩滀綆浜嶱WM2.5-BLS銆
鍥4 褰撴笚閫廈LS(鍚堟垚閾濆湡鐭挎恫)鏃讹紝PB GCL (S: SAP澧炲己, P: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)鐨勬笚閫忕郴鏁颁笌骞冲潎鑱氬悎鐗╂礂鑴遍熺巼(鍦ㄨˉ鍏呮潗鏂欎腑瀹氫箟)鐨勫叧绯汇侾AC (a)鍜孲AP (b)澧炲己PB GCL鐨勮仛鍚堢墿娲楄劚鐜(mg/d);PAC (c)鍜孲AP (d)澧炲己PB GCL鐨勮仛鍚堢墿娲楄劚鐜(%/d)銆
3.5 鑱氬悎鐗╃绫荤殑褰卞搷
濡傚浘3a鎵绀猴紝钃濊壊绗﹀彿浠h〃SAP(浜よ仈鑱氬悎鐗)澧炲己鐨凱B GCL锛岀孩鑹茬鍙蜂唬琛≒AC澧炲己鐨凣CL(绾挎ц仛鍚堢墿)銆傚浜庡共娉曞拰婀挎硶鍒跺鐨凱B GCL, SAP澧炲己鐨凣CL瀵笲LS鐨勬笚閫忕郴鏁颁綆浜嶱AC澧炲己鐨凣CL锛岃鏄庤仛鍚堢墿绫诲瀷褰卞搷鍏舵笚閫忕郴鏁般備緥濡傦紝SDM5-BLS鐨勬笚閫忕郴鏁拌繙浣庝簬PDM5-BLS (3.8 脳10-11 m/s < 6.0 脳10-9 m/s)銆傜劧鑰岋紝PWM15-BLS鍜孲WM15-BLS鐨勬笚閫忕郴鏁拌緝浣(~ 1.0 脳 10-12 m/s)锛岃繖琛ㄦ槑鑱氬悎鐗╃被鍨嬪鑱氬悎鐗╁姞杞戒负15.0%鏃禤B GCL鐨勬笚閫忕郴鏁板彲鑳芥病鏈夋樉钁楀奖鍝(Zainab et al., 2021)銆傚浜庨噰鐢ㄥ共鎾掓硶鍒跺鐨凱B GCL锛屽叾娓楅忕郴鏁颁笌鑱氬悎鐗╃被鍨嬫棤鍏炽係DS1鍜孭DS1銆丼DS2.5鍜孭DS2.5銆丼DS5鍜孭DS5鐨勫BLS鐨勬笚閫忕郴鏁版帴杩戙
浠ュ線鐨勭爺绌舵姤閬撲簡鑱氬悎鐗╃被鍨嬪PB GCL娓楅忕郴鏁版帶鍒舵満鍒剁殑褰卞搷 (Zainab et al., 2021)銆傜嚎鎬ц仛鍚堢墿(PAC)鏄按婧舵х殑锛屽彲浠ュ舰鎴愮矘鎬ц仛鍚堢墿姘村嚌鑳讹紝浣胯啫娑﹀湡棰楃矑缁撳悎鏇寸揣瀵嗭紝浣縋B GCL鍏锋湁鏇翠綆鐨勫瓟闅欑巼鍜屽瓟寰 (Chimamkpam et al., 2011)銆備氦鑱旇仛鍚堢墿(SAP)鍙互鍚告敹涓嶆祦鍔ㄧ殑姘达紝褰㈡垚涓夌淮姘村嚌鑳讹紝鍫靛娴侀亾锛屽鑷存笚閫忕郴鏁颁綆(Scalia et al., 2014; Di Emidio et al., 2015; Tian et al., 2019)銆
姝ゅ锛岄櫎浜哠DS1-BLS鍜孭DS1-BLS澶栵紝SAP澧炲己鐨凣CL鐨勮仛鍚堢墿娲楄劚鐜囦綆浜嶱AC澧炲己鐨凣CL(鍥4)銆備笌SAP涓嶅悓锛孭AC鏇村叿姘存憾鎬э紝鏇村鏄撻殢娓楅忔恫绉诲姩锛岃繖浣垮緱PAC澧炲己鐨凣CL鐨勮仛鍚堢墿娲楄劚鐜囨洿楂(Wireko et al., 2022).
3.6鍒跺鏂规硶鐨勫奖鍝
濡傚浘3a鎵绀猴紝鍒跺鏂规硶(涓夎褰:骞叉贩鍚堬紝鏂瑰舰:骞叉拻锛屽渾褰:婀挎贩鍚)涔熸帶鍒剁潃PB GCL鐨勬笚閫忕郴鏁般備笌婀挎贩娉曞拰骞叉贩娉曠浉姣旓紝閲囩敤骞叉拻娉曞埗澶囩殑PB GCL鍏锋湁鏇村ソ鐨勬按鍔涘鎬ц兘銆侾DS2.5-BLS鍏锋湁涓嶱WM15-BLS鐩镐技鐨勬笚閫忕郴鏁(~ 10-12 m/s)锛屼絾鍗充娇鍒濆鑱氬悎鐗╁姞杞界浉鍚(2.5%)锛孭DS2.5-BLS鐨勬笚閫忕郴鏁颁篃杩滀綆浜嶱WM2.5-BLS (8.2 脳 10-7 m/s)銆傜劧鑰岋紝鍦ㄤ綆鍒濆鑱氬悎鐗╁姞杞(PDS1-BLS鍜孲DS1-BLS)鐨勬儏鍐典笅锛屽共鎾扨B GCL鐨勬笚閫忕郴鏁颁笅闄嶅埌10-7 m/s锛岃繖琛ㄦ槑骞叉拻PB GCL浠嶇劧闇瑕佽冻澶熺殑鑱氬悎鐗╁姞杞芥潵淇濇寔杈冧綆鐨勬笚閫忕郴鏁般傛澶栵紝婀挎贩鍚堢殑PB GCL鐨勬笚閫忕郴鏁板彲鑳戒綆浜庡共娣峰悎鐨凱B GCL銆備緥濡傦紝SWM2.5-BLS鐨勬笚閫忕郴鏁颁綆浜嶴DM2.5-BLS (1.0 脳 10-12 < 6.3 脳 10-7 m/s)銆傝鍒跺鏂规硶涓昏閫氳繃褰卞搷鑱氬悎鐗╂礂鑴辨潵鎺у埗PB GCL鐨勬笚閫忕郴鏁般
PAC鍜孲AP閮芥槸鐢卞叿鏈変翰姘存у畼鑳藉洟(濡傜緹鍩哄拰缇у熀鎴栫景鍩)鐨勮仛鍚堢墿閾剧粍鎴愶紝杩欎簺瀹樿兘鍥㈠彲浠ョ粨鍚堟按鍒嗗瓙骞堕氳繃姘㈤敭褰㈡垚姘村嚌鑳 (Soppirnath and Aminabhavi, 2002; Ahmed, 2015; Deng et al., 2006; Behera and Mahanwar, 2020)銆 濡傚浘S6a鎵绀猴紝PWM5鏍峰搧涓病鏈夊彲瑙佺殑鑱氬悎鐗╂按鍑濊兌锛岃繖鏄敱浜庢箍娣峰悎鏂规硶鐨勬搷浣滐紝濡傚湪姘存荡涓姞鐑悈鎷屾垨楂樻俯骞茬嚗锛屽彲鑳戒細鐮村潖鑱氬悎鐗╅摼锛屽鑷存洿澶氱殑鑱氬悎鐗╄娲楄劚(Scalia, 2012)銆傜劧鑰岋紝PDM5鏍峰搧涓彲瑙侀粡鎬ц仛鍚堢墿姘村嚌鑳朵笉鍧囧寑鍦版贩鍚堝湪鑶ㄦ鼎鍦熶腑锛屾洿瀹规槗娲楄劚(鍥維6b)銆侾DS5鍦ㄨ啫娑﹀湡涓嬪舰鎴愪竴灞傜矘鎬ц仛鍚堢墿姘村嚌鑳(鍥維6c)銆傛澶栵紝鐢变簬娴佸叆渚х殑鑱氬悎鐗╁緢闅剧┛杩囪啫娑﹀湡灞傦紝鍥犳鍑犱箮娌℃湁鑱氬悎鐗╄縼绉诲埌娴佸嚭渚с傚洜姝わ紝骞叉拻PDS5涓殑鑱氬悎鐗╅毦浠ユ礂鑴变笖鍒嗗竷鍧囧寑锛屽鑷存笚閫廈LS鏃讹紝鑱氬悎鐗╂礂鑴遍熺巼(4.1mg/d)鍜屾笚閫忕郴鏁(1.6 脳 10-12 m/s)浣庝簬婀挎贩鍚堟垨骞叉贩鍚堢殑PB GCL(PWM5鎴朠DM5) (瑙佸浘4)銆
缁间笂鎵杩帮紝涓嶅悓鐨勫埗澶囨柟娉曞PB GCL鐨勬笚閫忕郴鏁版湁鏄捐憲褰卞搷锛屼笖鍚勬湁浼樼己鐐广傛箍娣峰悎娉曞埗澶囩殑PB GCL鐨勬按鍔涙ц兘鐣ュソ浜庡共娣峰悎娉曞埗澶囩殑PB GCL銆 浣嗘箍娣峰悎娉曟搷浣滆緝涓哄鏉傦紝鑰屽共娣峰悎娉曞彧杩涜绠鍗曠殑鐗╃悊娣峰悎銆傚煎緱娉ㄦ剰鐨勬槸锛岀敱浜庤仛鍚堢墿鍒嗗竷涓嶅潎鍖锛屽共娣稰B GCL瀹规槗鍙戠敓浼樺厛娴佸姩锛屼粠鑰屽鑷存洿楂樼殑娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辩巼銆備笌涓婅堪涓ょ鍒跺鏂规硶鐩告瘮锛屽埗澶囩畝鍗曠殑骞叉拻PB GCL鑱氬悎鐗╂礂鑴遍噺灏戯紝瀵笲LS鐨勬笚閫忕郴鏁拌緝浣庛傜劧鑰岋紝灏嗚仛鍚堢墿灞傚潎鍖鍦板浐瀹氬湪鑶ㄦ鼎鍦熺殑渚ч潰鏄竴涓妧鏈睆闅滐紝濡傞伩鍏嶅共娲掓硶鍒跺鐨凱B GCL鍦ㄨ繍杈撳拰鏂藉伐杩囩▼涓仛鍚堢墿灞傜殑鎹熷潖銆
3.7 閾濆湡鐭挎恫鍖栧鎴愬垎鐨勫奖鍝
GCL鐨勬笚閫忕郴鏁颁笌娓楅忔恫绂诲瓙寮哄害鐨勫叧绯诲鍥5鎵绀恒侭PC GCL (CP6.3, CP7.5, CP10.8鍜孋P12.1锛屾暟瀛椾唬琛ㄥ垵濮嬭仛鍚堢墿鍔犺浇)鍜岄摑鍦熺熆娑(GX-A1: 224.5 mM, SD-A: 620.3 mM)鏉ヨ嚜Li et al.锛 2021銆傚幓绂诲瓙姘(绂诲瓙寮哄害= 0 mM)娓楅忔椂锛孏A鐨勬笚閫忕郴鏁拌緝浣庯紝鑰岄殢鐫娓楅忔恫浣(閾濆湡鐭挎恫)绂诲瓙寮哄害鐨勫鍔狅紝GA鐨勬笚閫忕郴鏁版樉钁楁彁楂樸傛澶栵紝PB GCL鐨勬笚閫忕郴鏁颁篃涓庢笚閫忔恫浣撶殑绂诲瓙寮哄害鍛堟鐩稿叧 (Chen et al., 2019; Li et al., 2021; Zainab et al., 2021)銆侾B GCL鍦ㄧ瀛愬己搴﹁緝浣庣殑閾濆湡鐭挎恫(BLA鍜孏X-A1: < 500.0 mM)涓粛淇濇寔杈冧綆鐨勬笚閫忕郴鏁(<1.0 脳 10-10m /s)锛岃孭B GCL(PWM5鍜孋P6.3)瀵圭瀛愬己搴﹁緝楂樼殑閾濆湡鐭挎恫(BLS鍜孲D-A: > 500.0 mM)鐨勬笚閫忕郴鏁版彁楂(> 1.0 脳 10-10m /s)銆傜劧鑰岋紝鍗充娇浠LS涓烘笚閫忔恫浣擄紝SWM5鐨勬笚閫忕郴鏁颁篃杈冧綆(1.7脳 10-11 m/s)銆
鍥5 PB GCL瀵笵I姘村拰閾濆湡鐭挎恫鐨勬笚閫忕郴鏁颁笌绂诲瓙寮哄害鐨勫叧绯(CP6.3銆丆P7.5銆丆P10.8鍜孋P12.1鏉ヨ嚜Li et al.锛 2021;GX-A1: 224.5 mM, SD-A: 620.3 mM; BLS: 622.5 mM; BLA: 156.9mM)銆侴A:甯歌GCL;PWM5 (PAC 澧炲己)鍜孲WM5 (SAP澧炲己)鏄箍娣峰悎娉曞埗澶囩殑鍒濆鑱氬悎鐗╁姞杞戒负5%鐨凱B GCL銆
濡傝〃3鎵绀猴紝PB GCL(SWM5鍜孭WM5)鍦˙LA娓楅忎笅鐨勮仛鍚堢墿娲楄劚鐜囦綆浜嶣LS銆傝仛鍚堢墿鏋勮薄瀵归摑鍦熺熆娑茬殑鍖栧鎴愬垎鏁忔劅(Besra et al., 2002; Tian et al., 2019; Wireko and Abichou, 2021)銆傚叿鏈夎緝楂樼瀛愬己搴︾殑BLS閫氳繃鏀瑰彉鏋勮薄鏉ユ帶鍒惰仛鍚堢墿姘村嚌鑳剁殑绮樺害鍜岃縼绉荤巼锛屼粠鑰屾彁楂樹簡PB GCL鐨勮仛鍚堢墿娲楄劚鐜(Klenina and Lebedeva, 1983; Kurenkov, 1997; Schweins et al., 2003)銆傛澶栵紝澶嶅悎鏀规т娇PB GCL鍦ㄦ笚閫忕叅鐕冪儳浜х墿(CCP)娓楁护娑叉椂鐨勮仛鍚堢墿娲楄劚鐜囦綆浜庡崟涓鏀规(Wang et al., 2022)銆備笌2000.0 mM NaCl鐩告瘮锛500.0 mM CaCl2瀵筆B GCL鐨勮仛鍚堢墿娲楄劚鐜囨洿楂橈紝璇存槑闄や簡绂诲瓙寮哄害澶栵紝浜屼环闃崇瀛愪篃褰卞搷浜嗚仛鍚堢墿鐨勬礂鑴辩巼 (Wireko and Abichou, 2021)銆
琛3 涓嶅悓娓楅忔恫瀵筆B GCL鐨勮仛鍚堢墿娲楄劚鐜(CCP娓楁护娑叉潵鑷猈ang et al.锛2022;NaCl鍜孋aCl2婧舵恫鏉ヨ嚜Wireko鍜孉bichou, 2021;PWM5 (PAC澧炲己)鍜孲WM5 (SAP澧炲己)鏄箍娣峰悎娉曞埗澶囩殑鍒濆鑱氬悎鐗╄礋杞戒负5%鐨凱B GCL銆
缁间笂鎵杩帮紝鍓嶄汉鐨勭爺绌惰涓鸿仛鍚堢墿娲楄劚浼氬奖鍝峆B GCL鐨勬笚閫忕郴鏁帮紝鑱氬悎鐗╂礂鑴变細鎵撳紑娴侀亾锛屾彁楂樻笚閫忕郴鏁般傛澶栵紝鑱氬悎鐗╂礂鑴遍熺巼鍙互浣滀负璇勪环PB GCL闀挎湡娓楅忕郴鏁扮殑鍏抽敭鍥犵礌銆侾B GCL锛屽SWM10 (<1.0 mg/d)锛屽湪娓楅忚繃绋嬩腑淇濇寔杈冧綆鐨勮仛鍚堢墿娲楄劚鐜囷紝鍏锋湁杈冮珮鐨勬畫浣欒仛鍚堢墿鍔犺浇(9.9%)鍜岃緝浣庣殑娓楅忕郴鏁(1.7 脳 10-12 m/s)銆傝繖浜涗綆鑱氬悎鐗╂礂鑴辩巼鐨凱B GCL淇濈暀浜嗕竴瀹氳川閲忕殑鑱氬悎鐗╋紝鍫靛浜嗘祦閬擄紝瀵艰嚧PB GCL浣滀负閾濆湡鐭挎恫鐨勪笉閫忔按灞忛殰锛屽叾娓楅忕郴鏁颁綆锛岃璁″鍛介暱銆 鐒惰岋紝涓嶅悓璁捐骞翠唤瀵硅仛鍚堢墿娲楄劚閫熺巼鐨勫叿浣撹姹傝繕闇瑕佽繘涓姝ョ殑鐮旂┒鍜屾洿澶氱殑鏁版嵁鏀寔銆
3.8 鎺у埗娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辩殑鏈哄埗
3.8.1 PB GCL涓庤仛鍚堢墿姘村嚌鑳剁殑寰缁撴瀯
缁廈LS娓楅忓悗PB gcl鍜孏A鐨凷EM鍥惧儚濡傚浘6鎵绀恒侴A璇曟牱涓殑鑶ㄦ鼎鍦熷洟绨囧憟鐗囧眰鐘剁粨鏋勶紝瀛旈殭浼楀锛岀矑闂村瓟闅欒緝澶э紝鐩村緞涓5 ~ 10 渭m锛岃繖浣垮緱GABLS鍏锋湁杈冮珮鐨勬笚閫忕郴鏁(鍥6a)銆傚鍥6b鎵绀猴紝PWM10-BLS褰㈡垚鑱氬悎鐗╂按鍑濊兌绲嚌浣擄紝濉厖绮掗棿瀛旈殭锛屽牭濉炲瓟闅欑┖闂淬係WM10-BLS鏍峰搧鍚湁鑱氬悎鐗╂按鍑濊兌鑶滐紝瑕嗙洊鑶ㄦ鼎鍦熻〃闈㈡垨闃诲绮掗棿瀛旈殭(鍥6c)銆係DM10-BLS鐨凷EM鍥惧儚鏄剧ず锛岃啫娑﹀湡鍥㈢皣琚玈AP姘村嚌鑳剁洿鎺ュ寘瑁癸紝瀵艰嚧鑶ㄦ鼎鍦熶箣闂寸殑娌熷鍫靛(鍥6d)銆傚甫璐熺數鑽风殑闃寸瀛愯仛鍚堢墿鍊惧悜浜庨氳繃闈欑數鍚稿紩闄勭潃鍦ㄥ甫姝g數鐨勭矘鍦熻竟缂樹笂锛屾垨閫氳繃闃崇瀛愭ˉ闄勭潃鍦ㄥ甫璐熺數鐨勭矘鍦熻〃闈笂(Deng et al., 2006; Theng, 2012; Shi et al., 2022)銆備笉鍚岀粨鏋勭殑鑱氬悎鐗╂按鍑濊兌鍫靛浜嗘祦鍔ㄩ氶亾锛屽鑷碢B GCL瀵笲LS鐨勬笚閫忕郴鏁拌緝浣庛
鍥6 GA(甯歌GCL)鍜孭B GCL缁廈LS(鍚堟垚閾濆湡鐭挎恫)娓楅忓悗鐨凷EM鍥惧儚:(a) GA-BLS;(b) PWM10 (PAC澧炲己锛屽垵濮嬭仛鍚堢墿鍔犺浇:10%锛屾箍娣峰悎娉)-BLS;(c) SWM10 (SAP澧炲己锛屽垵濮嬭仛鍚堢墿鍔犺浇:10%锛屾箍娣峰悎娉)-BLS;(d) SDM10 (SAP澧炲己锛屽垵濮嬭仛鍚堢墿鍔犺浇:10%锛屽共娣锋硶)-BLS銆
鍐诲共鑱氬悎鐗╁湪閾濆湡鐭挎恫涓按鍖栫殑SEM鍥惧儚濡傚浘7鎵绀恒傞摑鍦熺熆娑蹭腑闃崇瀛愪笌鑱氬悎鐗╀腑甯﹁礋鐢靛畼鑳藉洟鐨勭浉浜掍綔鐢ㄦ敼鍙樹簡鑱氬悎鐗╂按鍑濊兌鐨勬瀯璞(Besra et al., 2002; Tian et al., 2019)銆傚鍥7a鍜宑鎵绀猴紝涓嶣LA姘村寲鍚(绂诲瓙寮哄害杈冧綆锛156.9 mM)锛岃仛鍚堢墿閾惧欢浼革紝褰㈡垚鐗囧眰鍫嗗彔鐨勮仛鍚堢墿姘村嚌鑳剁墖灞傜粨鏋勩傜劧鑰岋紝鐢变簬缇板熀绛夊甫鐢靛畼鑳藉洟鐨勪腑鍜屼綔鐢紝BLS涓殑鑱氬悎鐗╂瀯璞(绂诲瓙寮哄害鏇撮珮锛622.5 mM)琚敹缂╁拰鍗锋洸(鍥7b鍜宒) (Peng and Wu, 1999; Tian et al., 2019)銆侾B GCL瀵笲LS鍏锋湁杈冮珮鐨勬笚閫忕郴鏁帮紝杩欐槸鐢变簬鑱氬悎鐗╂按鍑濊兌鐨勫穿濉屼娇鍫靛鐨勫瓟闅欐墦寮锛屼粠鑰屽鑷翠簡鏋勮薄鐨勫彉鍖栥傚悓鏃讹紝杈冮珮鐨勭瀛愬己搴﹀紩璧风殑鏋勮薄鍙樺寲鍓婂急浜嗚仛鍚堢墿鐨勫惛姘磋兘鍔涳紝瀵艰嚧鑱氬悎鐗╂按鍑濊兌绮樺害杈冧綆锛屽鏄撹娲楄劚(鑱氬悎鐗╂礂鑴辩巼杈冮珮) (Schweins and Huber, 2001; Schweins et al., 2006; Chen et al., 2019; Li et al., 2021; Wireko and Abichou, 2021)銆
鍥7 鍐诲共PAC(鑱氶槾绂诲瓙绾ょ淮绱)鎴朣AP(楂樺惛姘存ц仛鍚堢墿)涓嶣LA(瀹為檯閾濆湡鐭挎恫)鎴朆LS(鍚堟垚閾濆湡鐭挎恫)姘村寲鐨凷EM鍥惧儚: (a) PAC-BLA; (b) PAC-BLS; (c) SAP-BLA; (d) SAP-BLS.
3.8.2 绮樺害瀵硅仛鍚堢墿娲楄劚鐨勫奖鍝
鑱氬悎鐗-鑶ㄦ鼎鍦熸祮鏂欑殑绮樺害濡傝〃4鍜屽浘S7鎵绀恒傛祮鏂欑矘搴﹂殢鑱氬悎鐗╁垵濮嬪姞杞介噺鐨勫鍔犺屽鍔狅紝PAC -鑶ㄦ鼎鍦熷拰SAP -鑶ㄦ鼎鍦熸祮鏂欑矘搴︾殑澧炲姞骞呭害涓嶅悓銆傛澶栵紝鍒跺鏂规硶鍜岄摑鍦熺熆娑插娴嗘枡鐨勭矘搴︿篃鏈夋帶鍒朵綔鐢ㄣ傜敱琛4鍜屽浘S7鍙煡锛岀敱浜庨摑鍦熺熆娑茬殑绂诲瓙寮哄害涓嶅悓锛孊LS鍒跺鐨勬祮娑茬矘搴︿綆浜嶣LA鍒跺鐨勬祮娑茬矘搴︺傝緝楂樼殑绂诲瓙寮哄害鍙互浣胯仛鍚堢墿鏋勮薄鍗锋洸锛屼粠鑰岄檷浣庢祮鏂欑殑绮樺害銆傛澶栵紝鑰冭檻鍒版箍娣峰悎杩囩▼涓殑鎿嶄綔鍙兘浼氱牬鍧忚仛鍚堢墿澶у垎瀛愰摼锛屽共娣峰悎娴嗘枡鐨勭矘搴﹂珮浜庢箍娣峰悎娴嗘枡銆
琛4 涓庨摑鍦熺熆娑叉贩鍚堢殑鑶ㄦ鼎鍦熸祮鏂欑殑绮樺害(GA:甯歌GCL;S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮;鏁板瓧琛ㄧず涓庨摑鍦熺熆娑叉贩鍚堢殑鍒濆鑱氬悎鐗╁姞鑽凤紝%)(BLA:瀹為檯閾濆湡鐭挎恫;BLS:鍚堟垚閾濆湡鐭挎恫)銆
鐢辫〃5鍜屽浘S8鍙煡锛屽湪PB GCL涓舰鎴愮殑鑱氬悎鐗╂按鍑濊兌鐨勭矘搴︽樉钁楀奖鍝嶆笚閫忚繃绋嬩腑鑱氬悎鐗╃殑娲楄劚閫熺巼銆傚浘S8涓殑1鍜2琛ㄦ槑锛孭B GCL鍒濆鑱氬悎鐗╁姞杞介珮锛岃仛鍚堢墿姘村嚌鑳剁矘搴﹀鍔狅紝鑱氬悎鐗╂礂鑴遍熺巼闄嶄綆銆傚浘S8涓殑3鍜4琛ㄦ槑锛岄摑鍦熺熆娑茬殑绂诲瓙寮哄害閫氳繃鏀瑰彉鑱氬悎鐗╂按鍑濊兌鐨勭矘搴︽潵鎺у埗鑱氬悎鐗╃殑娲楄劚閫熺巼銆
琛5 鑱氬悎鐗-鑶ㄦ鼎鍦熸祮鏂欑殑鑱氬悎鐗╂礂鑴遍熺巼鍜岀矘搴︺(BLA:瀹為檯閾濆湡鐭挎恫;BLS:鍚堟垚閾濆湡鐭挎恫;S: SAP澧炲己锛孭: PAC澧炲己;DS:骞叉磼寮忥紝WM:婀挎媽寮忥紝DM:骞叉媽寮; GCL涓殑鏁板瓧琛ㄧず鍒濆鑱氬悎鐗╁姞杞斤紝%)銆
鎬讳箣锛岄摑鍦熺熆娑茬殑鍖栧鎬ц川瀵筆B GCL鐨勮仛鍚堢墿娲楄劚鍜屾笚閫忕郴鏁伴兘鏈夊奖鍝嶃傜瀛愬己搴﹁緝楂樼殑BLS鎶戝埗浜嗚啫娑﹀湡鐨勬笚閫忚啫鑳锛屼粠鑰屾彁楂樹簡GCL鐨勬笚閫忕郴鏁般傛澶栵紝鐢变簬绂诲瓙寮哄害楂橈紝PB GCL涓殑鑱氬悎鐗╂按鍑濊兌缁撴瀯宕╂簝銆傛瀯璞$殑鏀瑰彉閫氳繃闄嶄綆鑱氬悎鐗╃矘搴﹀鑷磋仛鍚堢墿娲楄劚閲忓鍔狅紝閫氳繃鎵撳紑鏇村鍫靛鐨勫瓟闅欑┖闂村鑷碢B GCL鐨勬笚閫忕郴鏁版彁楂樸
4 缁撹
鏈爺绌惰皟鏌ヤ簡鑱氬悎鐗╁垵濮嬪姞鑽枫佽仛鍚堢墿绫诲瀷銆佸埗澶囨柟娉曘侀摑鍦熺熆娑茬瓑鍥犵礌瀵硅仛鍚堢墿-鑶ㄦ鼎鍦熷湡宸ュ悎鎴愯啫娑﹀湡琛灚(PB GCL)娓楅忕郴鏁板拰鑱氬悎鐗╂礂鑴辨х殑褰卞搷銆傚井灏哄害鍒嗘瀽琛ㄦ槑锛岃仛鍚堢墿閫氳繃闃崇瀛愭ˉ鎺ヤ笌钂欒劚鐭冲琛ㄩ潰缁撳悎銆傜敱浜庤仛鍚堢墿鐨勫牭濉炴満鍒讹紝鍒濆鑱氬悎鐗╁姞杞藉厖瓒崇殑PB GCL瀵归摑鍦熺熆娑茬殑鍖栧鐩稿鎬т紭浜庡父瑙凣CL (GA)銆備綆鍒濆鑱氬悎鐗╁姞杞界殑PB GCL鍏锋湁杈冮珮鐨勮仛鍚堢墿娲楄劚鐜囷紝鍥犱负楂樼殑娓楅忕郴鏁板鑷磋仛鍚堢墿鐨勬樉鐫鍐叉礂鏁堟灉銆傜敱浜嶱AC(鑱氶槾绂诲瓙绾ょ淮绱)澧炲己鐨凣CL鍏锋湁瀹屽叏鐨勬按婧舵э紝鍥犳鍏惰仛鍚堢墿娲楄劚鐜囬珮浜嶴AP(楂樺惛姘磋仛鍚堢墿)澧炲己鐨凣CL銆傛澶栵紝鐢变簬鑱氬悎鐗╁眰鍧囧寑锛岃仛鍚堢墿杩佺Щ鍥伴毦锛屽共娲扨B GCL鍏锋湁杈冧綆鐨勬笚閫忕郴鏁板拰鑱氬悎鐗╂礂鑴遍熺巼銆傚煎緱娉ㄦ剰鐨勬槸锛岄珮绂诲瓙寮哄害寮曡捣鐨勮仛鍚堢墿鏋勮薄鍙樺寲鍙互閫氳繃鎵撳紑瀛旈殭鏉ユ彁楂楶B GCL鐨勬笚閫忕郴鏁帮紝閫氳繃闄嶄綆鑱氬悎鐗╃殑绮樺害鏉ユ彁楂樿仛鍚堢墿鐨勬礂鑴遍熺巼銆
鍙傝冩枃鐚
Ahmed, E., 2015. Hydrogel: Preparation, characterization, and applications: a review.J. Adv. Res. 6, 105鈥121. https://doi.org/10.1016/j.jare.2013.07.006.
ASTM, 2010. Standard test method for measuring the exchange complex and cation exchange capacity of inorganic fine-grained soils. In: ASTM D7503, West Conshohocken, PA.
ASTM, 2011. Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners. In: ASTM D5890. West, Conshohocken, PA.
ASTM, 2012. Standard test method for evaluation of hydraulic properties of geosynthetic clay liners permeated with potentially incompatible aqueous solutions. In: ASTM D6766, West Conshohocken, PA.
ASTM, 2016. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. In: ASTM D5084, West Conshohocken, PA.
ASTM, 2017. Standard test method for total carbon and organic carbon in water by ultraviolet, or persulfate oxidation, or both, and infrared detection. In: ASTM D4839, West Conshohocken, PA.
Behera, S., Mahanwar, P.A., 2020. Superabsorbent polymers in agriculture and other applications: a review. Polym.-Plastics Technol. Mater. 59 (4), 341鈥356. https://doi.org/10.1080/25740881.2019.1647239.
Benson, C.H., Wang, X., Gassner, F.W., Foo, D.C.F., 2008. Hydraulic conductivity of two geosynthetic clay liners permeated with an aluminum residue leachate. In: Proceedings 1st Pan American Geosynthetics Conference and Exhibition, Cancun (Mexico). Industrial Fabrics Association International (IFAI), Roseville, MN, USA, pp. 94鈥101.
Benson, C., Oren, A., Gates, W., 2010. Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalkaline solution. Geotext. Geomembr. 28 (2), 206鈥218. https://doi.org/10.1016/j.geotexmem.2009.10.002.
Besra, L., Sengupta, D., Roy, S., Ay, P., 2002. Flocculation and dewatering of kaolin suspensions in the presence of polyacrylamide and surfactants. Int. J. Miner. Process. 66, 203鈥232. https://doi.org/10.1016/S0301-7516(02)00066-2.
Bouazza, A., Gates, W.P., 2014. Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry. Geosynth. Int. 221, 151鈥167.https://doi.org/10.1680/gein.14.00006.
Bradshaw, S.L., Benson, C.H., 2014. Effect of municipal solid waste leachate on hydraulic conductivity and exchange complex of geosynthetic clay liners. J. Geotech. Geoenviron. 140 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001050, 04013038.
Bradshaw, S.L., Benson, C.H., Scalia IV, J., 2013. Hydration and cation exchange during subgrade hydration and effect on hydraulic conductivity of geosynthetic clay liners. Geotext. Geomembr. 139, 526鈥538. https://doi.org/10.1061/(ASCE)GT.1943-
5606.0000793.
Bradshaw, S.L., Benson, C.H., Rauen, T.L., 2015. Hydraulic conductivity of geosynthetic clay liners to recirculated municipal solidwaste leachates. J. Geotech. Geoenviron. 142 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001387, 04015074.
Chai, J.C., Prongmanee, N., 2020. Barrier properties of a geosynthetic clay liner using polymerized sodium bentonite. Geotext. Geomembr. 48, 392鈥399. https://doi.org/10.1016/j.geotexmem.2019.12.010.
Chen, J.N., Benson, C.H., Edil, T.B., 2018. Hydraulic conductivity of geosynthetic clay liners with sodium bentonite to coal combustion product leachates. J. Geotech. Geoenviron. 144 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001844, 04018008.
Chen, J.N., Salihoglu, H., Benson, C.H., Likos, W.J., Edil, T.B., 2019. Hydraulic conductivity of bentonite鈥損olymer composite geosynthetic clay liners permeated with coal combustion product leachates. J. Geotech. Geoenviron. 145 https://doi.org/10.1061/(ASCE)GT.1943-5606.0002105, 04019038.
Chimamkpam, T.O., Rasteiro, M.G., Garcia, F.A.P., Antunes, E., Ferreira, P., Hunkeler, D., Wandrey, C., 2011. Solution viscosity and flocculation characteristics of linear polymeric flocculants in various media. Chem. Eng. Res. Des. 89,1037鈥1044. https://doi.org/10.1016/j.cherd.2010.10.022.
Deng, Y., Dixon, J., White, G., Loeppert, R., Juo, A., 2006. Bonding between polyacrylamide and smectite. Colloids Surf. A Physicochem. Eng. Asp. 281 (1),82鈥91. https://doi.org/10.1016/j.colsurfa.2006.02.030.
Di Emidio, G., Mazzieri, F., Verastegui-Flores, R.D., Van Impe, W., Bezuijen, A., 2015. Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners. Geosynth. Int. 22, 125鈥137. https://doi.org/10.1680/gein.14.00036.
Du, Y.J., Shen, S.Q., Tian, K., Yang, Y.L., 2021. Effect of polymer amendment on hydraulic conductivity of bentonite in calcium chloride solutions. J. Mater. Civ. Eng. 33 https://doi.org/10.1061/(ASCE)MT.1943-5533.0003518, 04020452.
Jo, H.Y., Benson, C.H., Shackelford, C.D., Lee, J.M., Edil, T.B., 2005. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. J. Geotech. Geoenviron. Eng. 131 (4), 405鈥417.
Jo, H.Y., Katsumi, T., Benson, C.H., Edil, T.B., 2001. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. J. Geotech. Geoenviron. 127, 557鈥567. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(557).
Kadajji, V.G., Betageri, G.V., 2011. Water soluble polymers for pharmaceutical applications. Polymers 3, 1972鈥2009. https://doi.org/10.3390/polym3041972.
Katsumi, T., Ishimori, H., Ogawa, A., Yoshikawa, K., Hanamoto, K., andR. Fukagawa., 2007. Hydraulic conductivity of nonprehydrated geosynthetic clay liners permeated with inorganic solutions and waste leachates. Soils Found. 47, 79鈥96. https://doi.org/10.3208/sandf.47.79.
Katsumi, T., Ishimori, H., Onikata, M., Fukagawa, R., 2008. Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions. Geotext. Geomembr. 26, 14鈥30. https://doi.org/10.1016/j.geotexmem.2007.04.003.
Klenina, O., Lebedeva, L., 1983. Viscometric properties of dilute solutions of hydrolyzed polyacrylamide. Polym. Sci. U.S.S.R. 25, 2380鈥2389. https://doi.org/10.1016/0032-3950(83)90171-5.
Kolstad, D., Benson, C., Edil, T., Jo, H., 2004a. Hydraulic conductivity of dense prehydrated GCL permeated with aggressive inorganic solutions. Geosynth. Int. 11, 233鈥241. https://doi.org/10.1680/gein.2004.11.3.233.
Kolstad, D.C., Benson, C.H., Edil, T.B., 2004b. Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. J. Geotech. Geoenviron. 130, 1236鈥1249. https://doi.org/10.1061/ (ASCE)1090-0241(2004)130:12(1236).
Kurenkov, V., 1997. Acrylamide polymers. In: Cheremisinoff, N.P. (Ed.), Handbook of Engineering Polymeric Materials. Marcel Dekker, New York, pp. 61鈥72. Landis, C.R., Youngblood, J.G., Liao, W.A., Coles, B.L., 2012. Methods of Using Improved Bentonite Barrier Compositions and Related Geosynthetic Clay Liners. Halliburton Energy Services, Inc, Houston, TS (US), United States, p. 13.
Li, Q., Chen, J.N., Benson, C.H., Peng, D.P., 2021. Hydraulic conductivity of bentonite polymer composite geosynthetic clay liners permeated with bauxite liquor. Geotext. Geomembr. 49 (2), 420鈥429. https://doi.org/10.1016/j.geotexmem.2020.10.015.
Mazaheri, M., Simchi, A., Golestani-Fard, F., 2008. Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. J. Eur. Ceram. Soc. 28 (15), 2933鈥2939. https://doi.org/10.1016/j.jeurceramsoc.2008.04.030.
McWatters, S., Rowe, R.K., DiBattista, V., Sfilijog, B., Wilkins, D., Spedding, T., 2019. Exhumation and performance of an Antarctic composite barrier system after 4 years exposure. Can. Geotech. J. 57, 1130鈥1152. https://doi.org/10.1139/cgj-2018-0715.
Moore, D., Reynolds, R., 1989. X-Ray Diffraction and the Identification of Clay Minerals. Oxford University Press, New York, p. 332.
Morgan, A.B., Gilman, J.W., 2003. Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J. Appl. Polym. Sci. 87, 1329鈥1338. https://doi.org/10.1002/app.11884.
Norris, A., Aghazamani, N., Scalia, J., Shackelford, C.D., 2022a. Hydraulic performance of geosynthetic clay liners comprising anionic polymer鈥揺nhanced bentonites. J. Geotech. Geoenviron. 148 https://doi.org/10.1061/(ASCE)GT.1943-5606.0002781, 04022039.
Norris, A., Scalia, J., Shackelford, C.D., 2022b. Mechanisms controlling the hydraulic conductivity of anionic polymer-enhanced GCLs. Geosynth. Int. https://doi.org/10.1680/jgein.21.00051.
Peng, S.F., Wu, C., 1999. Light scattering study of the formation and structure of partially hydrolyzed poly(acrylamide)/calcium(II) complexes. Macromolecules 32, 585鈥589.https://doi.org/10.1021/ma9809031.
Razakamanantsoa, A.R., Barast, G., Djeran-Maigre, I., 2012. Hydraulic performance of activated calcium bentonite treated by polyionic charged polymer. Appl. Clay Sci.59, 103鈥114. https://doi.org/10.1016/j.clay.2012.01.022.
Rivas, B.L., Urbano, B.F., S鈥檃nchez, J., 2018. Water-soluble and insoluble polymers, nanoparticles, nanocomposites and hybrids with ability to remove hazardous inorganic pollutants in water. Front. Chem. 6, 1鈥13. https://doi.org/10.3389/fchem.2018.00320.
Rowe, R., 2020. Geosynthetic clay liners: perceptions and misconceptions. Geotext. Geomembr. 48, 137鈥156. https://doi.org/10.1016/j.geotexmem.2019.11.012.
Salemi, N., Abtahi, S.M., Rowshanzamir, M., Hejazi, S.M., 2018. Geosynthetic clay liners: effect of structural properties and additives on hydraulic performance and durability. Environ. Earth Sci. 77, 1鈥13. https://doi.org/10.1007/s12665-018-7364-z.
Scalia, J., 2012. Bentonite-Polymer Composites for Containment Applications. The University of Wisconsin-Madison, p. 2012.
Scalia, J., Benson, C.J., 2016. Polymer Fouling and Hydraulic Conductivity of Mixtures of Sodium Bentonite and a Bentonite-Polymer Composite. J. Geotech. Geoenviron. 143, 04016112. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001628.
Scalia, J., Benson, C.H., Bohnhoff, G.L., Edil, T.B., Shackelford, C.D., 2014. Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions. J. Geotech. Geoenviron. 140, 1鈥13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001040.
Schweins, R., Huber, K., 2001. Collapse of sodium polyacrylate chains in calcium salt solutions. Eur. Phys. J. E 5, 117鈥126. https://doi.org/10.1007/s101890170093.
Schweins, R., Lindner, P., Huber, K., 2003. Calcium induced shrinking of NaPA chains: a SANS investigation of single chain behavior. Macromolecules 36, 9564鈥9573. https://doi.org/10.1021/ma0347722.
Schweins, R., Goerigk, G., Huber, K., 2006. Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: a combined light scattering and ASAXS study. Eur.Phys. J. E, Soft Matter 21, 99鈥110. https://doi.org/10.1140/epje/i2006-10047-7.
Setz, M.C., Tian, K., Benson, C.H., Bradshaw, S.L., 2017. Effect of ammonium on the hydraulic conductivity of geosynthetic clay liners. Geotext. Geomembr. 45, 665鈥673. https://doi.org/10.1016/j.geotexmem.2017.08.008.
Shackelford, C.D., Benson, C.H., Katsumi, T., Edil, T.B., Lin, L., 2000. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr. 18, 133鈥162. https://doi.org/10.1016/S0266-1144(99)00024-2.
Shi, F.J., Feng, S.J., Zheng, Q.T., Zhang, X.L., Chen, H.X., 2022. Effect of polyanionic cellulose modification on properties and microstructure of calcium bentonite. Appl. Clay Sci. 228, 106633 https://doi.org/10.1016/J.CLAY.2022.106633.
Soppirnath, K., Aminabhavi, T., 2002. Water transport and drug release study from crosslinked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur. J. Pharm. Biopharm. 53, 87鈥98. https://doi.org/10.1016/S0939-6411(01)00205-3.
Standardization Administration of the People鈥檚 Republic of China, 2014. Code for Design of Dry Red Mud Stack in China. In: GB 50986. Beijing, China.
Standardization Administration of the People鈥檚 Republic of China, 2020. Standard for Pollution Control on the Non-hazardous Industrial Solid Waste Storage and Landfill in China. In: GB 18599. Beijing, China.
Sun, C.W., Chen, J.N., Tian, K., Peng, D.P., Liao, X., Wu, X.Y., 2019. Geochemical characteristics and toxic elements in alumina refining wastes and leachates from management facilities. Int. J. Environ. Res. Public Health 16, 1297. https://doi.org/10.3390/ijerph16071297.
Theng, B., 1982. Clay-polymer interactions: summary and perspectives. Clay Clay Miner. 30, 1鈥10.
Theng, B., 2012. Formation and Properties of Clay-Polymer Complexes, 2nd ed. Elsevier, Amsterdam, Netherlands.
Tian, K., Benson, C.H., 2018. Containing Bauxite liquor using bentonite-polymer composite geosynthetic clay liners: towards a sustainable geoenvironment. In: Proceedings of the 8th International Congress on Environmental Geotechnics.
Tian, K., Benson, C.H., 2019. Containing bauxite liquor using bentonite-polymer composite geosynthetic clay liners. In: Zhan, L., Chen, Y., Bouazza, A. (Eds.), Proceedings of the 8th International Congress on Environmental Geotechnics, Environmental Science and Engineering, 2. Springer, Singapore, pp. 672鈥678. https://doi.org/10.1007/978-981-13-2224-2_83.
Tian, K., Benson, C.H., Likos, W.J., 2016. Hydraulic conductivity of geosynthetic clay liners to low-level radioactive waste leachate. J. Geotech. Geoenviron. 142 (8), 04016037. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001495.
Tian, K., Likos, W.J., Benson, C.H., 2019. Polymer elution and hydraulic conductivity of bentonite鈥損olymer composite geosynthetic clay liners. J. Geotech. Geoenviron. 145 (10), 04019071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002097.
Wang, H., Jiang, L.S., Zhang, C.R., Wang, K., Li, Y.C., Pu, H.F., Zhao, Q., 2022. Cabentonite/polymer nanocomposite geosynthetic clay liners for effective containment of hazardous landfill leachate. J. Clean. Prod. 365, 132825 https://doi.org/10.1016/J.JCLEPRO.2022.132825.
Wireko, C., Abichou, T., 2021. Investigating factors influencing polymer elution and the mechanism controlling the chemical compatibility of GCLs containing linear polymers. Geotext. Geomembr. 49, 1004鈥1018. https://doi.org/10.1016/J.GEOTEXMEM.2021.01.009.
Wireko, C., Abichou, T., Tian, K., Zainab, B., Zhang, Z., 2022. Effect of incineration ash leachates on the hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners. Waste Manag. 139, 25鈥38. https://doi.org/10.1016/J.WASMAN.2021.12.011.
Yu, C., Liao, R.P., Cai, X.Q., Yu, X.N., 2019. Sodium polyacrylate modification method to improve the permeant performance of bentonite in chemical resistance. J. Clean. Prod. 213, 242鈥250. https://doi.org/10.1016/j.jclepro.2018.12.179.
Zainab, B., Wireko, C., Li, D., Tian, K., Abichou, T., 2021. Hydraulic conductivity of bentonite-polymer geosynthetic clay liners to coal combustion product leachates. Geotext. Geomembr. 49, 1129鈥1138. https://doi.org/10.1016/J.GEOTEXMEM.2021.03.007.